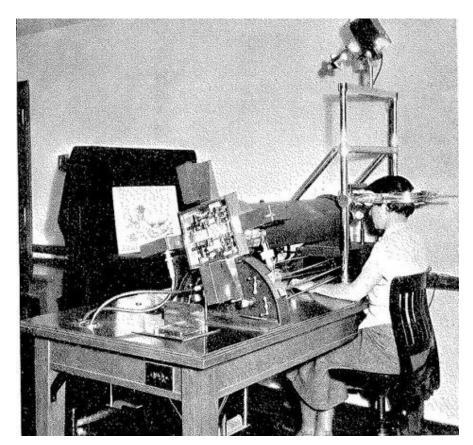
RGBDGaze: Gaze Tracking on Smartphones with RGB and Depth Data

Riku Arakawa

(adviser: Mayank Goel)

Background: gaze tracking technology

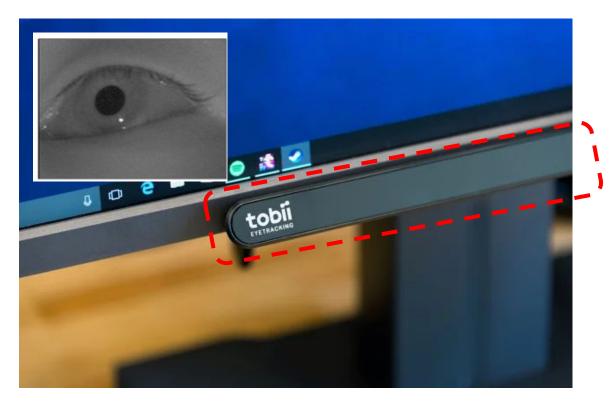
1930s Psychological study



Background: gaze tracking technology

2017 Tobii Eye Tracker

Infrared sensor < 1cm error



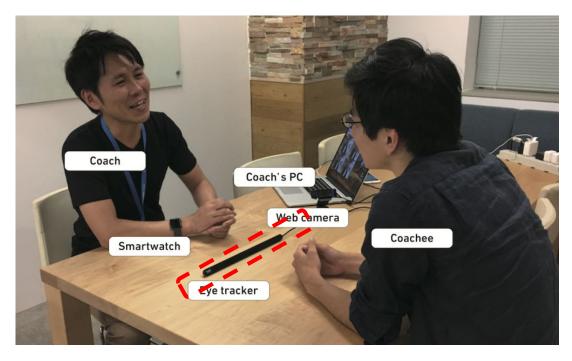
Background: gaze tracking application

Accessible technology

Background: gaze tracking application

Human behavior analysis

Arakawa and Yakura [CHI'19]



Background: gaze tracking application

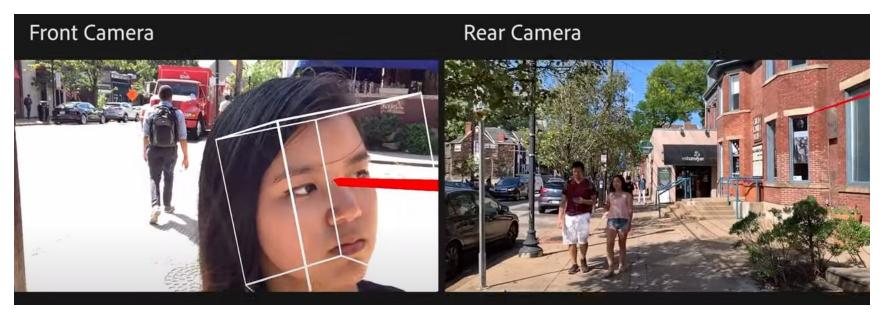
Attention-based interaction

Arakawa and Yakura [CHI'21]

Background: potentials of mobile gaze tracking

- Mobile gaze tracking can support more everyday situations.
 - Inability to use touchscreen with encumbered hands
 - Social interactions using smartphones
 - Novel multimodal interactions between users and smartphones

Background: mobile gaze tracking applications in research



Enhance voice assistant with gaze

Mayer et al. [CHI'21]

Background: mobile gaze tracking applications in research

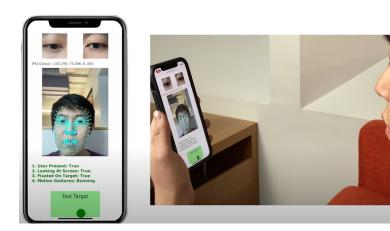
Combined use of gaze and hand gestures

Kong et al. [ICMI'21]

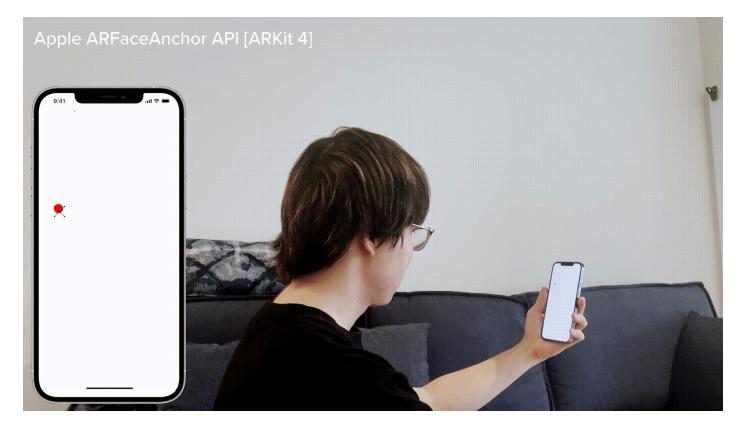
Background: why is mobile gaze tracking not common?

These mobile gaze tracking works require

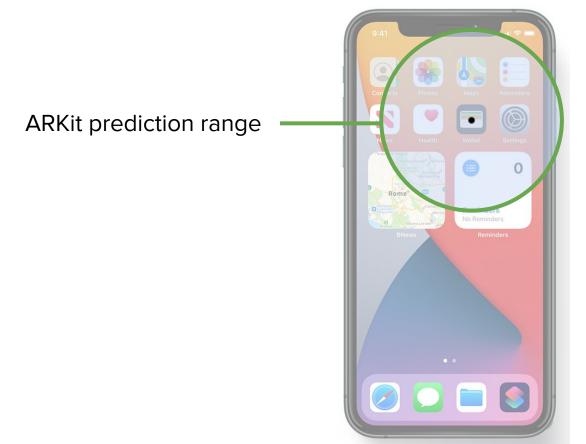
- Per-user calibration
- Constrained scenarios



Background: insufficient accuracy in mobile gaze tracking



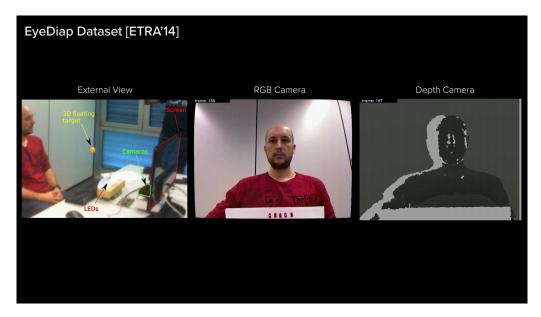
Background: insufficient accuracy in mobile gaze tracking



What's needed for mobile gaze tracking?

- High accuracy
- Calibration-free
- Capable of working in unconstrained situations

Related Work: effectiveness of depth channel

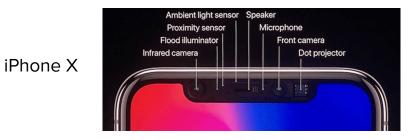


The addition of the depth channel decreased the error by roughly 18%. Depth provides

- Precise head orientation
- Distance from the screen to the head

Can we leverage depth sensor on recent mobile devices?

Depth cameras on mobiles



Google Pixel 4

Can we leverage depth sensor on recent mobile devices?

Depth cameras on mobiles

Desktop-grade depth cameras

Kinect 2

Google Pixel 4

16

Can we leverage depth sensor on recent mobile devices?

Depth cameras on mobiles

Kinect 2

Desktop-grade depth cameras

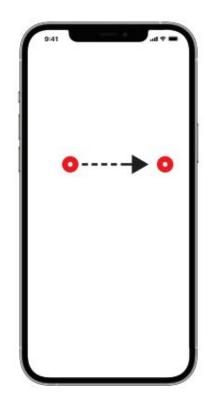
Google Pixel 4

Our intuition:

Even a coarse depth sensor can provide information of rough head orientation and distance between the screen to the phone in diverse use contexts.

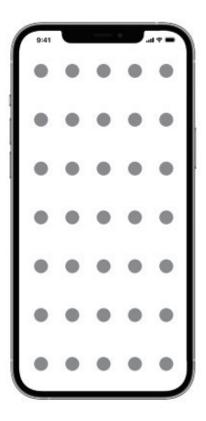
Data Collection

- A dot target moving on the screen
- Record synchronized data at 8 Hz
 - RGB image
 - Depth map
 - ARKit prediction (used for evaluation)
 - (+ motion data from the IMU sensor)



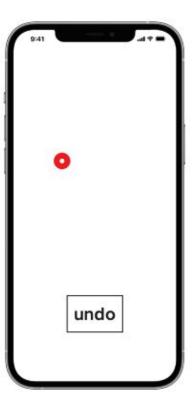
Data Collection

- 7 x 5 locations
- Move from one to another location linearly



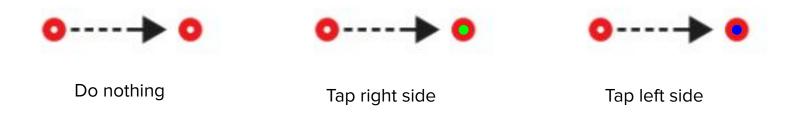
Data Collection

- "Undo" function
- Tap screen to stop the animation and jump back to the previous dot location



Data Collection: attention check

- To ensure data reliability (e.g., preventing looking away)
- Participants need to take an action for each dot animation based on its color.



Data Collection: use contexts

Standing

Walking

Lying

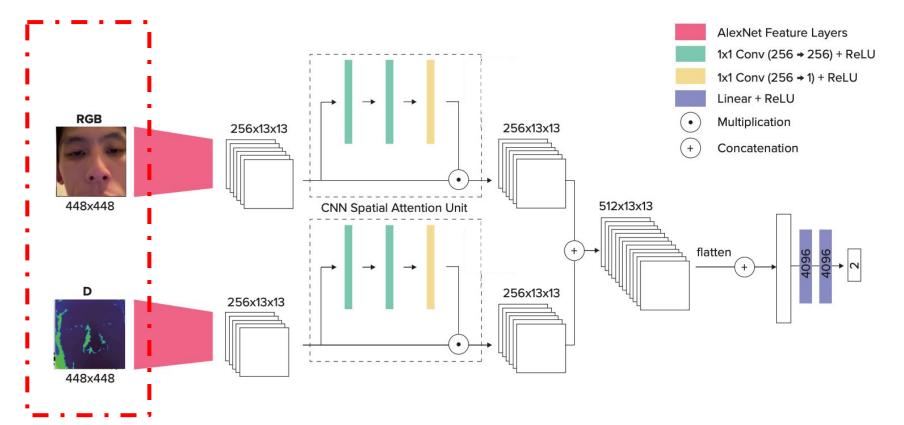
Data Collection: summary

- We did not control the environment.
- Images with blink are automatically detected and removed.

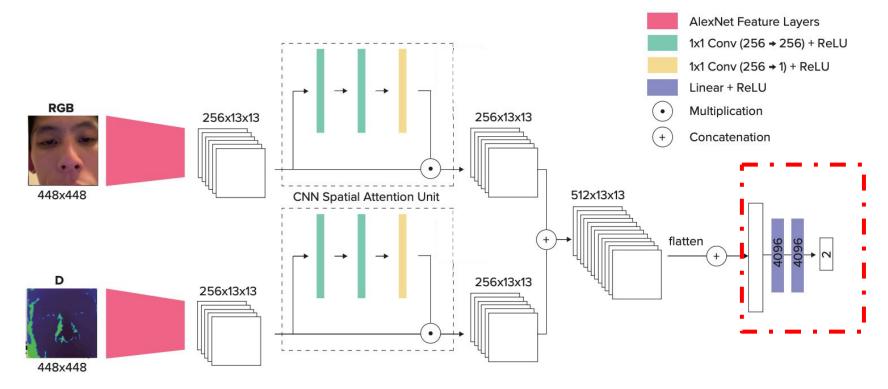
As a result,

- 50 participants
 - 15 different iPhones (>= iPhone X)
 - 14 wore glasses
- 160,120 samples across 4 use contexts

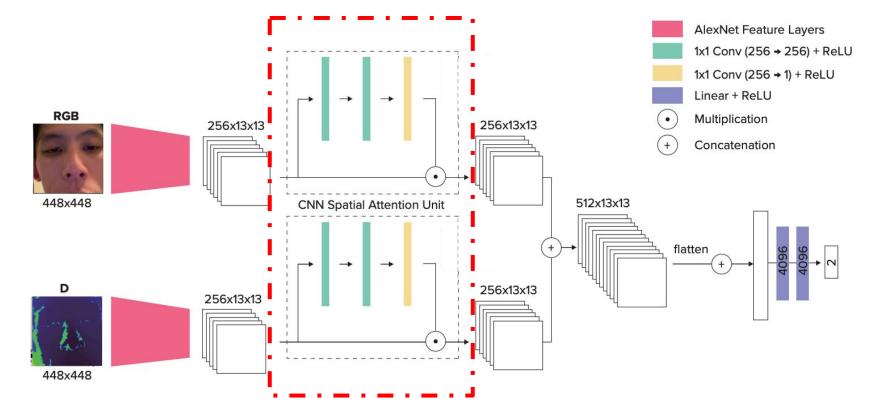
Implementation: model



Implementation: model



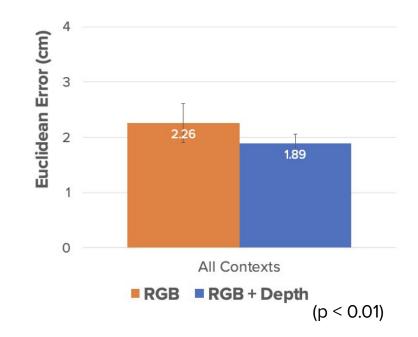
Implementation: model



Result: all context

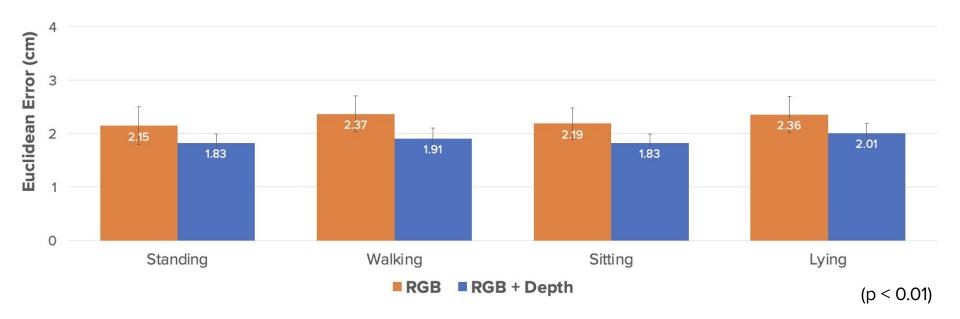
- Leave-one-participant-out (50 participants)
- Compare RGB model and RGB + D model

Result: all context



• Depth contributed to the error reduction by 16 %

Result: each context



- Use context affects the performance.
- In every case, the depth helps the model.

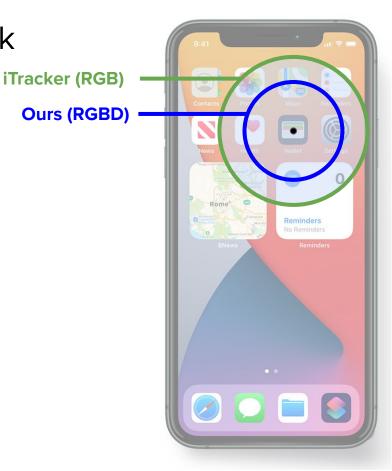
Result: per-context-calibrated model



- Context-specific models perform better than a single "general" model.
- Existing activity recognition techniques can boost the tracking performance.

- Our dataset
 - ARKit:
 - iTracker:
 - Our RGB model:
 - Our RGBD model:

- Our dataset
 - ARKit: 6.38 cm
 - iTracker: 2.77 cm
 - Our RGB model: 2.26 cm
 - Our RGBD model: 1.89 cm



- Our dataset
 - ARKit: 6.38 cm
 - iTracker: 2.77 cm
 - Our RGB model: 2.26 cm
 - Our RGBD model: 1.89 cm
- GazeCapture dataset
 - iTracker: 2.04 cm
 - Our RGB model: 2.03 cm

- Our dataset
 - ARKit: 6.38 cm
 - iTracker: 2.77 cm
 - Our RGB model: 2.26 cm
 - Our RGBD model: 1.89 cm
- GazeCapture dataset
 - iTracker: 2.04 cm
 - Our RGB model: 2.03 cm

Our dataset has

- Challenging capture scenarios
- Larger screen size

Result: qualitative error analysis

6.01 cm

6.19 cm

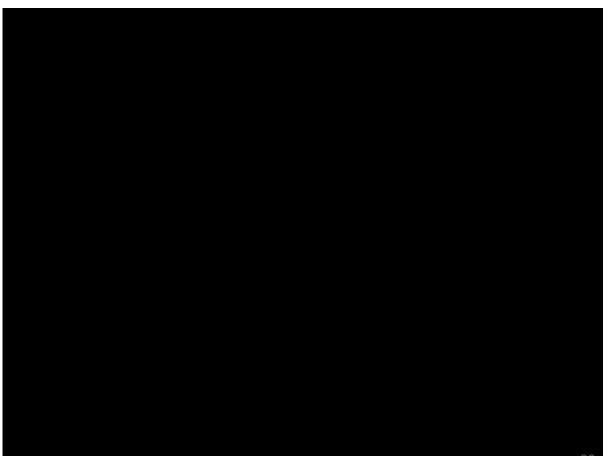
7.18 cm

5.18 cm

5.97 cm

On-device Model

- iPhone 12 Pro Max
- RGBD Model
 - 7 FPS (121.3 ms latency)
- RGB Model
 - 10 FPS (85.3 ms latency)



Summary

- We collected a dataset of mobile **RGB + Depth (RGBD)** gaze tracking.
 - 50 participants
 - \circ 4 use contexts: standing, walking, sitting, lying
- Our RGBD model outperformed existing systems.
 - Adding depth channel **reduced the error by 16.3%** (RGB: 2.26 cm, RGBD: 1.89 cm)
- We developed the on-device system to enable real-time interactions.

Limitation and Future Work

- Further improvement of accuracy
 - Larger scale data collection
 - IMU sensor fusion

Limitation and Future Work

- Diverse data collection on crowd-sourcing
 - More contexts: climbing stairs, biking, etc

GazeCapture dataset

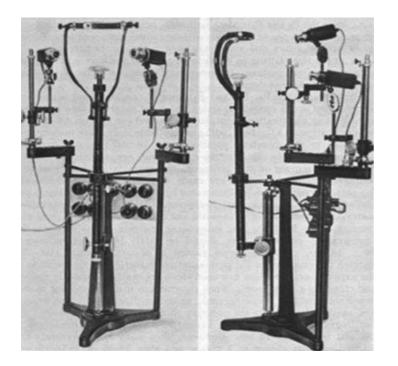
RGBDGaze: Gaze Tracking on Smartphones with RGB and Depth Data

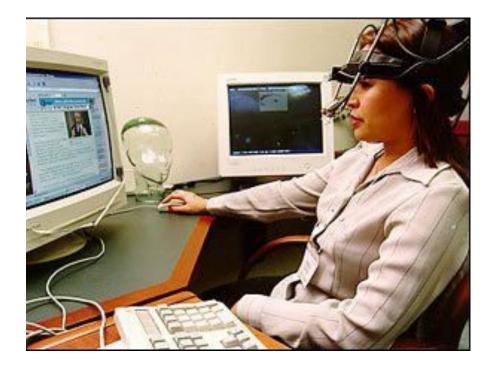
Riku Arakawa

Dataset and source code: https://github.com/FIGLAB/RGBDGaze

Appendix

Background: gaze tracking technology





1960s Chin rest 1990s Wearable

Implementation: training protocol

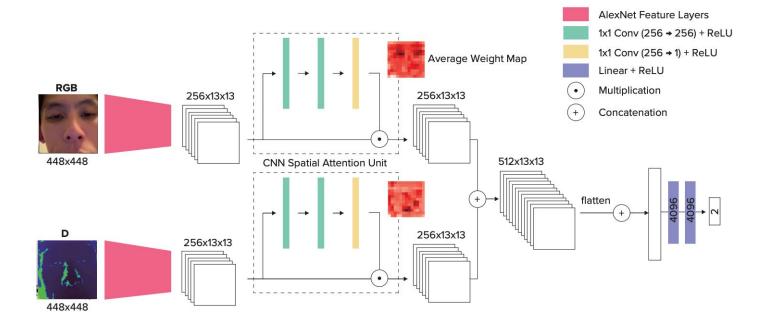
- PyTorch 1.9.1
- Batch Size: 16
- SGD Optimizer
 - Initial learning rate: 5e-4
 - Momentum: 0.9
 - Weight decay: 1e-4
- Loss function: mean squared error
- 20 epochs
- Leave-one-participant-out evaluation
 - 12 hours x 50 participants

- Our dataset
 - ARKit: 6.38 cm
 - iTracker: 2.77 cm
 - Our RGB model: 2.26 cm
 - Our RGBD model: 1.89 cm
- Other mobile gaze tracking systems (Different dataset)
 - Tablet Gaze: 3.17 cm
 - EyeTab: 2.58 cm

Related Work

System	Captu RGB	re Modality Depth	Mobile Device	Unconstrained Study	Calibration –Free	Mean Gaze Error
Columbia Gaze [37]						-
UT MultiView [39]	\checkmark				\checkmark	6.5°
ETH-XGaze [51]	\checkmark				\checkmark	4.7°
MPII Gaze [52]	\checkmark			\checkmark	\checkmark	6.3°
RT-GENE [14]	\checkmark			\checkmark	\checkmark	7.7°
Gaze360 [21]	\checkmark			\checkmark	\checkmark	13.5°
Wang and Ji [45]	\checkmark	\checkmark		1		4.0°
Zhou et al. [55]	\checkmark	\checkmark		\checkmark		1.99°
EyeDiap [34]	\checkmark	\checkmark		\checkmark	\checkmark	8.1°
ShanghaiTechGaze+ [30]	\checkmark	\checkmark		\checkmark	\checkmark	3.87 cm
EyeTab [47]	\checkmark		\checkmark		\checkmark	2.58 cm
Valliappan et al. [44]	\checkmark		\checkmark	\checkmark		0.46 cm
EyeMU [24]	\checkmark		\checkmark	\checkmark		1.7 cm
iTracker [25]	\checkmark		\checkmark	\checkmark		1.34 cm
iMon [18]	\checkmark		\checkmark	\checkmark	\checkmark	1.57 cm
TabletGaze [17]	\checkmark		\checkmark	\checkmark	\checkmark	3.17 cm
iTracker [25]	\checkmark		\checkmark	\checkmark	\checkmark	2.77 cm
Apple ARKit [7]	\checkmark		\checkmark	\checkmark	\checkmark	6.38 cm
Our System	\checkmark	✓	1	1	1	1.89 cm

Result



Result

