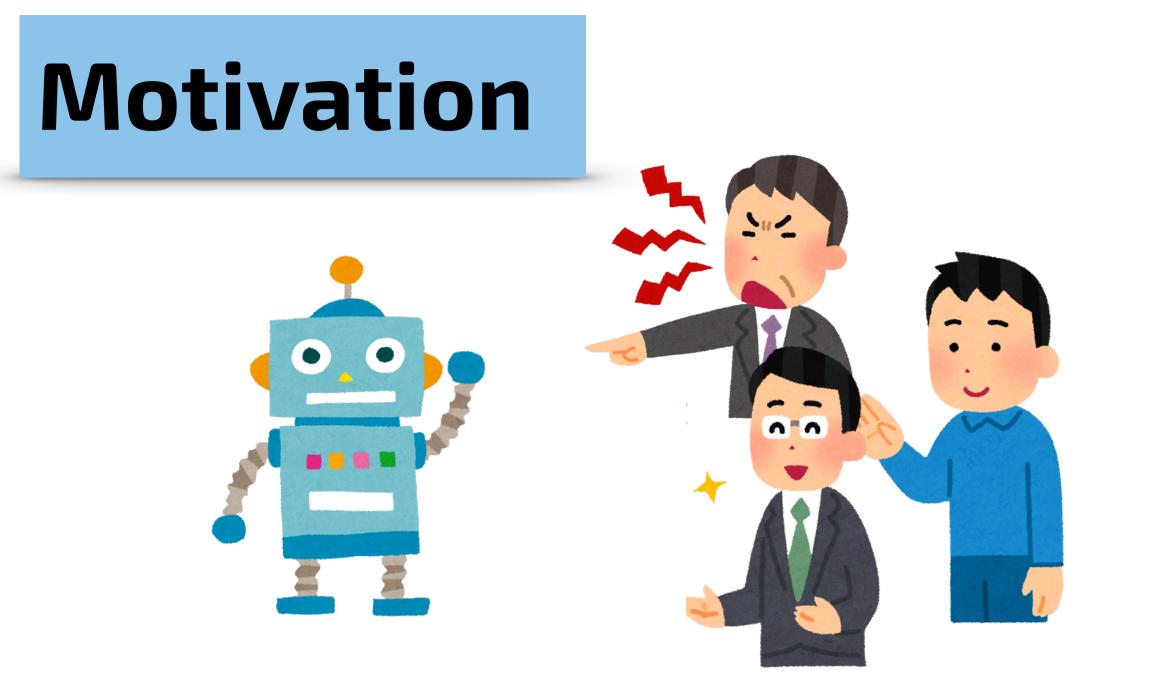
DON-TAMER: Human-in-the-Loop Reinforcement Learning with Intractable Feedback

- <u>Riku Arakawa¹, Sosuke Kobayashi², Yuya Unno², Yuta Tsuboi², and Shin-ichi Maeda²</u>
- ¹The University of Tokyo, ²Preferred Networks, Inc.
- * This work is done in Preferred Networks, Inc.
- * Full paper is available at https://arxiv.org/abs/1810.11748



- Reinforcement learning (RL) is promising for robotics, but it requires a great deal of time.
- One reason is that agent can get rewards from environments often at the end of the task, long after some of their actions.

1. What's the difficulty of human feedback?

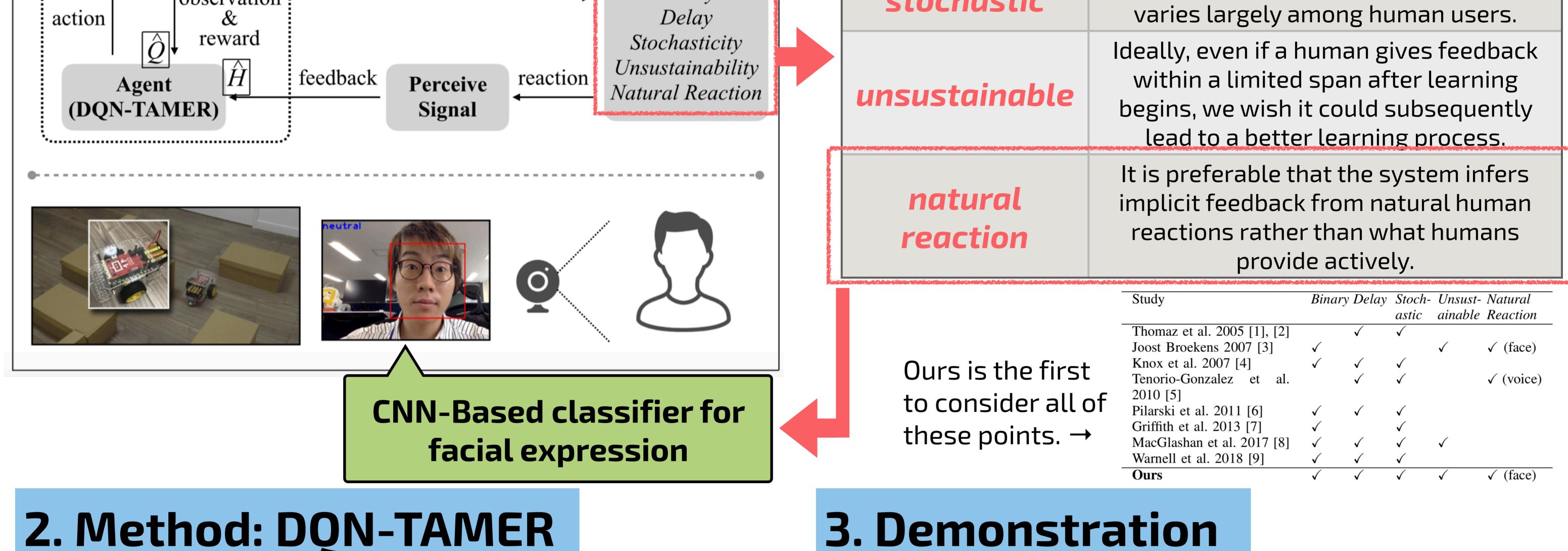
 \rightarrow reformulate human observers with more realistic characteristics.

2. How can we mix human feedback and task reward?

- \rightarrow apply a simple RL algorithm that utilizes rewards from both human and environments.
- **3.** Can the agent read human natural response as feedback?
 - \rightarrow demonstrate in the real world setting with human facial expression as rewards.

1. Problem Formulation Human-in-the-Loop reinforcement learning Environment Human watch performance Binary observation

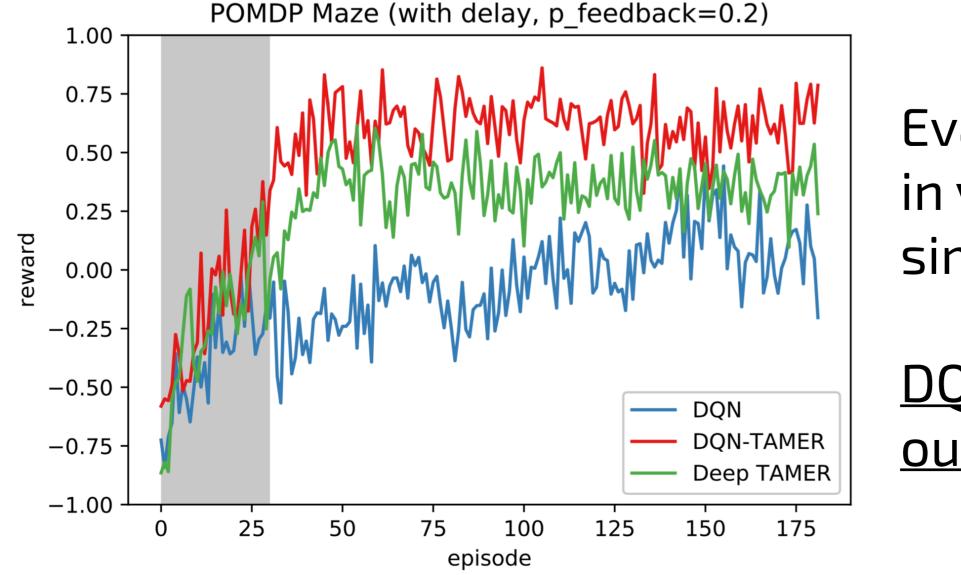
factor	description
binary	Binary feedback is preferred, simply indicating good or bad.
delay	Human feedback is usually delayed by a significant amount of time and the delay must not be constant.
stochastic	It is reported that the feedback frequency



Car robot solving a grid maze

Policy

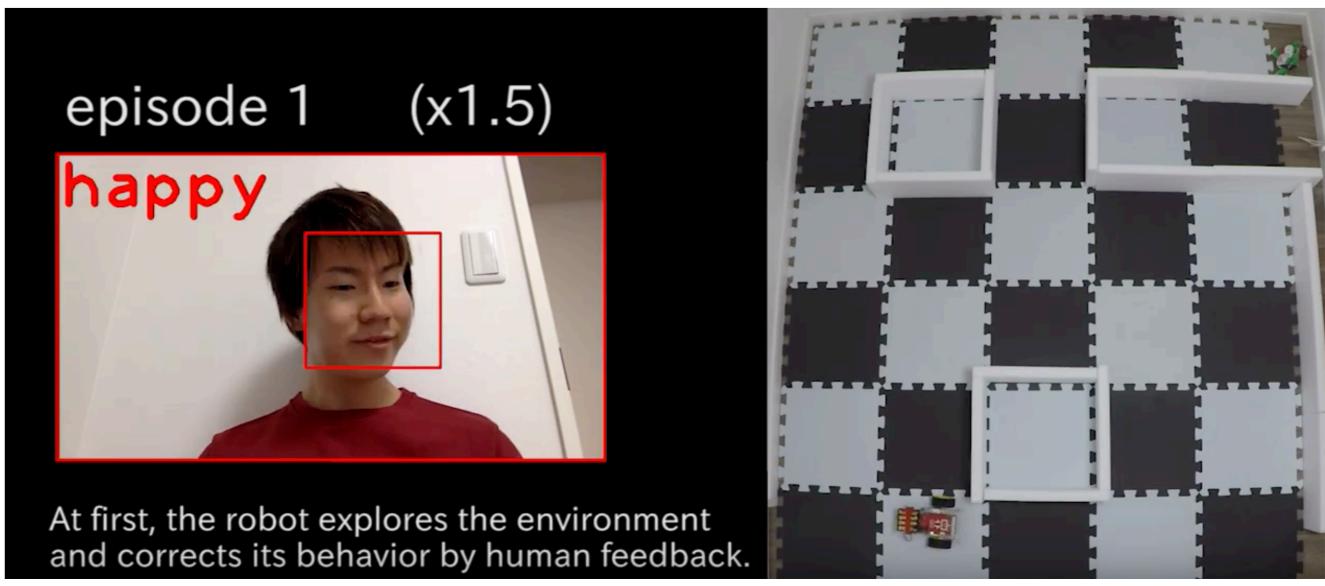
Policy:
$$\pi(s)_{\text{DQN-TAMER}} = \arg \max_{a} \alpha_q \hat{Q}(s, a) + \alpha_h \hat{H}(s, a).$$
 (1)



Evaluate its robustness in various settings of simulated human.

DON-TAMER outperforms baselines.

The agent could utilize human facial expression, even though its recognition sometimes failed.



- [1] A. L. Thomaz, et al., "Real-time interactive reinforcement learning for robots," in AAAI 2005 workshop on human comprehensible machine learning, 2005.
- [2] --, "Reinforcement learning with human teachers: Understanding how people want to teach robots," in The 15th IEEE International Symposium on Robot and Human Interactive Communication, RO- MAN, 2006, pp. 352-357.
- [3] J. Broekens, "Emotion and reinforcement: affective facial expressions facilitate robot learning," in Artifical intelligence for human computing. Springer, 2007, pp. 113–132.
- [4] W. B. Knox and P. Stone, "TAMER: Training an agent manually via evaluative reinforcement," in 2008 7th IEEE International Conference on Development and Learning, Aug 2008, pp. 292–297.
- [6] P. M. Pilarski, et al., "Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning," in IEEE International Conference on Rehabilitation *Robotics*, 2011, pp. 1–7.
 - [7] S. Griffith, et al., "Policy shaping: Integrating human feedback with reinforcement learning," in Advances in Neural Information Process- ing Systems 26, 2013, pp. 2625–2633.
 - [8] J. MacGlashan, et al., "Interactive learning from policy-dependent human feedback," in Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 2285–2294.
- [5] A. C. Tenorio-Gonzalez, et al., "Dynamic reward shaping: Training a robot by voice," in Proceedings of the 12th Ibero-American Conference on Advances in Artificial Intelligence, 2010, pp. 483–492. [9] G. Warnell, et al., "Deep TAMER: Interactive agent shaping in high- dimensional state spaces," in Proceedings of the 12th Ibero-American Conference on Advances in Artificial Intelligence, 2018.