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Motivation • Reinforcement learning (RL) is promising for robotics, but it 
requires a great deal of time. 

• One reason is that agent can get rewards from 
environments often at the end of the task, long after some 
of their actions. 

Can robots learn from human through immediate natural 
response such as their facial expression or behavior?

1. What’s the difficulty of human feedback? 
→reformulate human observers with more realistic characteristics. 

2. How can we mix human feedback and task reward? 
     →apply a simple RL algorithm that utilizes rewards from both human and environments. 
3. Can the agent read human natural response as feedback? 
     →demonstrate in the real world setting with human facial expression as rewards.

1. Problem Formulation factor description

binary Binary feedback is preferred, simply 
indicating good or bad. 

delay
Human feedback is usually delayed by a 
significant amount of time and the delay 

must not be constant. 

stochastic It is reported that the feedback frequency 
varies largely among human users. 

unsustainable
Ideally, even if a human gives feedback 

within a limited span after learning 
begins, we wish it could subsequently 

lead to a better learning process. 

natural 
reaction

It is preferable that the system infers 
implicit feedback from natural human 

reactions rather than what humans 
provide actively. 

2. Method: DQN-TAMER 3. Demonstration

✓ The agent could utilize human facial expression, even 
though its recognition sometimes failed.
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CNN-Based classifier for 
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Policy:

Evaluate its robustness 
in various settings of 
simulated human. 

DQN-TAMER 
outperforms baselines.

Ours is the first 
to consider all of 
these points. →
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