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ABSTRACT
In the field of physical augmentation, researchers have attempted
to extend human capabilities by expanding the number of human
appendages. To fully realize the potential of having an additional
appendage, supernumerary appendages should be independently
controllable without interfering with the functionality of existing
appendages. Herein, we propose a novel approach for controlling
supernumerary appendages by exploiting upper limb redundancy.
We present a headphone-style visual sensing device and a recogni-
tion system to estimate shoulder movement. Through a set of user
experiments, we evaluate the feasibility of our system and reveal
the potential of independent control using upper limb redundancy.
Our results indicate that participants are able to intentionally give
commands through their shoulder motions. Finally, we demonstrate
the wide range of supernumerary appendage control applications
that our novel approach enables and discuss future prospects for
our work.

CCS CONCEPTS
• Human-centered computing → Human computer interaction
(HCI); • Computer systems organization→ Real-time operating
systems; Robotic control.

KEYWORDS
Supernumerary Appendages, Supernumerary Robotic Limbs, Inde-
pendent Control, Human Body Redundancy, Wearable Sensing
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Figure 1: Our proposed system for allowing users to operate
supernumerary appendages without disrupting existing ap-
pendages by exploiting upper limb redundancy.

1 INTRODUCTION
One aspect of human augmentation is the enhancement of human
physical ability through various technologies. One approach to
physical augmentation is to expand the number of appendages
beyond those which we are naturally born with (i.e., adding super-
numerary appendages). To date, research in this area has focused
on developing supernumerary robotic appendages (SRAs) to as-
sist in task performance in the physical world [22, 25, 30, 31, 33–
35, 38, 38, 40, 42] and adding supernumerary appendages to virtual

19

https://doi.org/10.1145/3458709.3458980
https://doi.org/10.1145/3458709.3458980
https://doi.org/10.1145/3458709.3458980


AHs ’21, February 22–24, 2021, Rovaniemi, Finland Shimobayashi, et al.

avatars [21]. For example, existing works have proposed adding a
robotic third or fourth arm [33, 38], a 6th finger [35, 42], a tail [25,
30], and a pair of wings to a healthy human body. Similarly, in
research pertaining to VR, significant research has been conducted
on avatars with supernumerary virtual appendages [21].

While research into the development of such supernumerary
appendages is quite active, operation of the appendages remains a
significant challenge of the domain. In many cases, appendages are
operated using hand motions (e.g., joysticks and VR controllers).
These methods of operation, however, are far from ideal. The ap-
pendages that we are naturally born with are able to function more
or less independently of each other. For example, we are able to
move our right armwithout having to occupy our left hand with the
task of moving the right arm. Ideally, supernumerary appendages
would similarly be usable without sacrificing the independence of
any other appendages.

Past work has proposed a variety of operation methods that
realize hands-free operation of supernumerary appendages. These
include operation methods that use feet [38], head direction [23],
facial expressions [16], and electromyographic signals from the
abdominal muscles [34] to operate supernumerary appendages.
However, while these methods do not occupy the hands, they still
occupy and limit the functionality of commonly used body parts. For
example, we use our feet for walking, our faces and head directions
expressing ourselves, and abdominal muscles for breathing and
balancing. For supernumerary appendages to be used as natural
appendages and realize integrated human augmentation, there is
a need to enable operation of the new appendages with minimal
interference to our natural body’s functionality.

Minimal interference in appendage functionality could be real-
ized by exploiting the redundancy which exists in the human body.
Here, redundancy refers to having more controllable degrees of
freedom than the total number of degrees of freedom. The human
arm, for example, is a highly redundant appendage and allows sig-
nificant motion even when the end effector (the hand) remains fixed
in place. Herein, we propose to utilize these degrees of freedom
for supernumerary appendage operation without interfering with
appendage functionality.

Namely, we present a system for measuring motions in the shoul-
der and translating them into control inputs to realize supernumer-
ary appendages operation without disrupting the functionality of
any major bodily functions (e.g., manipulation with the hands).
Our system consists of a headphone-style wearable visual sensing
device and a convolution neural network (CNN) trained to recog-
nize shoulder motions as inputs. Through user experiments, we
showed the feasibility and potential of our method. Through a set
of demonstrations, we illustrate that our system has a broad range
of applications operating a number of supernumerary appendages.

Thus, the contributions of this paper are as follows: (1) A novel
input system making use of the redundancy present in the upper
limbs; (2) A demonstration of independent hand-based tasks and
supernumerary appendages control.

2 RELATEDWORK
To enable independent operation of supernumerary appendages
(e.g., wearable robotic limbs), we constructed a wearable system

for shoulder sensing. Herein, we provide an overview of operation
methods for wearable robotics and wearable methods for sensing
body movement.

2.1 Operation Methods for Wearable Robotics
One class of wearable robotics, designed with the objective of en-
hancing human physical abilities in all manner of scenarios [40],
is that of supernumerary robotic appendages (SRAs), also known
as supernumerary robotic limbs (SRLs). The term SRA refers to
wearable robotic systems that add independent appendages to the
human bodywhich are not present in themajority of the population.
This is in contrast to exoskeletal robotic systems which typically
encase and enhance the existing human body. Examples include
systems like supernumerary robotic limbs (which may or may not
be human-like in structure) [31, 33, 34, 38], supernumerary robotic
fingers [22, 35, 42], and robotic tails [25, 30].

A great many approaches to enabling effective use of supernu-
merary robotic appendages, including shared, assistive, and direct
control, have been explored [41]. Regardless of the approach, how-
ever, designing an effective interface which allows users to operate
wearable robotic systems remains a topic of great interest in this
field. Past work has proposed a variety of approaches for making
use of body motions and gestures as inputs when operating SRAs.
For example, Sasaki et. al. [38] have proposed making use of foot
motions for operating a wearable robot arm while in a seated posi-
tion. Other works have suggest making use body parts other than
appendages, such as facial expressions [16], facial direction [23],
and electromyographic signals from the abdominal muscles [34], to
operate SRAs. However, these methods all make use of body parts
which are used regularly in our daily lives, limiting the scenarios in
which these methods can be used to operate SRAs. To make full use
of SRAs for enhancing physical abilities in humans, it is desirable to
minimize the impact that operating the SRA has on the operation
of existing human body parts.

Herein, we focus on exploiting mechanical redundancies in the
human body to enable SRA operation without affecting natural
human performance. Our proposed system exploits the mechanical
redundancy of the human body’s upper limbs to allow effective
operation of SRAswithout impacting the performance of the human
hands. Namely, we present a method for sensing shoulder postures
and using shouldermotion for operating SRAswhile simultaneously
and independently using the hands for manipulation.

2.2 Wearable Sensing of Body Movements
SRAs are wearable devices that are used in a variety of situations,
ranging from daily activities to industrial tasks [40]. It is, thus,
desirable for sensing modules, SRA interfaces, to also be wearable.

Research into developing wearable sensing systems that act
as novel input interfaces is highly active in the field of human-
computer interaction (HCI). Methods for sensing hand movements
have a particularly long history of investigation [14]. The most
common approach here is attaching sensors directly to the hand.
However, there are issues with directly attaching a sensor to the
body. The sensor, or the way it is attached, can interfere with impor-
tant functions of the body part. It can, for example, make it difficult
to feel fine sensations and impede freedom of movement.
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To resolve the problems with direct attachment, researchers have
tried indirect approaches. In these approaches, a body part’s motion
is estimated from themovement of related (e.g., adjacent) body parts.
For example, previous works have developed systems for estimating
hand posture from a sensing device wrapped around the wrist or
arm. These past works make use of a variety of sensors including
force sensing resistors (FSRs) [11, 29], electromyography (EMG) [29,
37], piezoelectric sensors [13], electrical impedance tomography [36,
43], and infrared reflectance or transmittance [15, 28]. In other
examples, several works achieved sensing face movements through
ear-mounted devices [3, 6, 26].

Another approach to resolving issues with direct attachment
has been to move even further away from the body part and use
computer vision (CV) to sense body movements. Recent advance-
ments in CV have enabled HCI researchers to capture motions and
postures of a part or a whole of human body by utilizing wear-
able cameras. Sensing the hand position and shape is a common
application for this approach [4, 8, 19]. For example, Harrison et
al. [19] used a body-worn camera for tracking hand touch input
on the surface of the body. Chan et al. [8] presented a ring-style
fisheye camera that can classify hand gestures. Arakawa et al. [4]
used a hand-mounted spherical camera to simultaneously detect
hand gestures and hand location around the body.

Similar approaches have been applied to sensing face [10] and
whole-body movements [1, 9, 39]. C-Face [10], for example, is a
headphone-shaped device consisting of two ear-mounted miniature
cameras that can reconstruct face keypoints. Shiratori et al. [39]
developed a motion capture system using body-mounted cameras
and Chan et al. [9] proposed a single-piece wearable motion-capture
device. Recently, Ahuja et al. [1] integrated hemispherical mirrors
into a VR headsets for body pose estimation.

Alongwith the approaches to hand sensing, these two approaches,
direct attachment and CV-based approach, could be used for sensing
shoulder motion. However, there remain challenges in directly at-
taching sensors to the shoulder area due to its complex structure and
its large range of motion and deformation. CV-based approaches are
comparably easier to adopt due to their less restrictive placement
requirements. The existence of wearable CV-based approaches for
sensing the motion of large body parts has inspired us to adopt a
similar CV-based approach for capturing the users’ shoulder pos-
ture. In particular, we take a data-driven approach to construct a
recognition model as previous works suggest that this can result
in robust posture classification across users [4, 8–10]. In the next
section, we describe our system. This includes our design rationale,
our hardware prototype, and the recognition model we used.

3 PROPOSED SYSTEM
Herein, we propose a wearable shoulder sensing system which
aims to exploit redundant degrees of freedom in the upper limbs to
enable SRA operation without impeding the motion of the hands.
The system consists of a headphone-style visual sensing device and
a CNN-based recognition model.

3.1 Rationale for Our Design
Many appendages in the human body contain redundant degrees
of freedom (DoF). The arm, for example, contains a total of 7DoF (3

Figure 2: Our proposed wearable visual sensing device.

in the wrist, 1 in the elbow, and 3 in the shoulder) for controlling
the 6DoF (3 for position and 3 for orientation) of the hand [24].
Combined with the shoulder, an upper human limb contains more
than 8DoF for controlling the position and orientation (pose) of
the hand. These redundant degrees of freedom are typically used
to achieve the same hand pose with a range of arm and shoulder
postures. This is useful when, for example, reaching into and work-
ing in narrow and complex spaces. Herein, we seek to exploit the
redundant DoFs of the upper body limbs to enable independent and
parallel operation of SRAs and the hands. Specifically, our proposed
system aims to detect shoulder postures and use them as inputs to
operate SRAs.

Although various techniques have been proposed, there are chal-
lenges in applying these existing methods to shoulder sensing,
which we need in this study for the purpose of utilizing upper
limb redundancy for control of supernumerary appendages. First,
attaching sensors directly to shoulder areas is unsuitable. It may
interfere with the user’s shoulder movement, but also mounting
sensors on shoulders stably is a challenge, because of the large dis-
placement of shoulder areas. Next, it is more difficult to apply the
existing estimation approaches to sensing shoulder motions. Since
human shoulders have a complicated structure and occupy a large
area, it is challenging to estimate the movements of shoulders from
the movements of the related body parts (e.g., an arm or a neck).
Furthermore, just as human bodies come in a variety of shapes and
sizes, human shoulders are likely to also vary significantly from
person to person in terms of their size, shape, and flexibility. For
these reasons, we thought sensing shoulder movements by attach-
ing on-body sensors around the shoulder area could be difficult.
Instead, we decided to take a CV-based sensing approach (Section
2.2).

3.2 Hardware Design
To sense shoulder motion, we developed a headphone-shaped sens-
ing device (Figure 2). The device contains two downwards facing
cameras embedded in the headphones to capture top-down video
of the shoulders. It also has two speaker units, which were used
to give voice instructions to participants during the experiments.
Other mounting locations for the shoulder sensing cameras, such
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Figure 3: The proposed headphone-shaped visual sensing device designed to acquire the shoulder motion. (a) A user wearing
the sensing device with directions for shoulder motion under consideration indicated with arrows. (b) The shoulder postures
selected for recognition based on preliminary results. (c) Sample images captured from the left camera for each posture.

as along the jaw or back, were considered but eliminated due to
the lack of space, being too close to the shoulder, or not offering a
complete view of the shoulder across all possible shoulder motions.
The headphone form factor was also selected as past work has
shown that it is a form factor that can be worn with relatively small
variations in worn location and orientation [10].

The two cameras we used to capture the shoulders were both
ELP USB8MP02G-L180 RGB cameras with fisheye lense (1024*768
pixels, 30 fps). Other sensors we considered during development
included depth and infrared cameras, and optical distance sensors.
However, due to the measurement target (i.e., the shoulder), its
location and proximity, the workspace size and vantage point, and
sensor size constraints, we opted to use an RGB camera with a
fisheye lense. The wide field of view enabled using the fisheye lense
contributed greatly to the continued sensing of the shoulder across
their wide range of motion. As mentioned earlier in Section 2.2,
similar cameras have been used for on-body sensing and have been
proven to give robust sensing and recognition results when used in
conjunction with machine learning based recognition systems [4].
Also, we show the installation of the device in Figure 3a.

3.3 Recognition Model
Here, we describe the recognition model used in our proposed sys-
tem to identify shoulder postures. Inspired by other works which
utilize fisheye cameras, we opted to use a convolutional neural
network based on the 50-layer residual network (ResNet-50) [20]
architecture. This architecture is known for having skip connections
and performing well on image recognition tasks. We pre-trained
the model on the ImageNet [12] public dataset and then trained the
network further on a data set we collected ourselves. To achieve
fast recognition results in anticipation of running the system in
real-time, we chose to first center crop the input images from a size
of 1024×768 pixels to 768×768 pixels and then resize the cropped
image to be 224×224 pixels. Manual confirmation of the resulting
images showed that the shoulder remained in view across shoul-
der movements and that the resolution was sufficient for shoul-
der recognition. From preliminary results, we found that there
were little differences between the rest position and movements

towards the downward direction. Therefore, we chose six shoul-
der postures for recognition: “REFERENCE (REF)”, “UP”, “FRONT”,
“BACK”, “UPANDFRONT (UF)”, and “UPANDBACK (UB)”. These
postures can be seen in Figure 3b. A set of sample images indicating
how each posture looks from the left camera are shown in Figure
3c. The output layer of the network was, thus, adjusted to have 6
outputs. For training the network, we used the Adam optimizer
with a learning rate and weight decay of 1.0 × 10−3, 1.0 × 10−2
respectively. In the interest of time, training was performed on a
PC with a GeForce RTX 3090 GPU. Real-time recognition, however,
is possible with even a Quadro T2000 (i.e., GTX 1060 mobile or
equivalent). Finally, the model was developed using the PyTorch
framework in Python.

4 FEASIBILITY EXPERIMENTS
In this section, we present 3 user experiments we conducted to
demonstrate the feasibility of our proposed shoulder input system.
In the first experiment, we evaluated the feasibility of the proposed
system under controlled conditions. In the second experiment, we
examined whether participants could use the system for real-time
operation and learn to blindly use the system without feedback.
Finally, in the third experiment, we investigated how the partici-
pants’ body posture affected the recognition results and revealed
that shoulder input has the potential to control supernumerary ap-
pendages regardless of what the participant’s hands are doing. The
results obtained from our experiments showed that our system can
recognize shoulder postures in a variety of conditions and that a
human operator is capable of operating supernumerary appendages
using our system in a variety of body postures. It should be noted
that the experiments we conducted are feasibility experiments and
not evaluations of robustness.

As the purpose of this experiment was to test the feasibility
of our system, all experiments were conducted in a room with
controlled fluorescent lighting with participants wearing predeter-
mined clothing. This ensured consistency in the data set during our
experiments. We acknowledge that there is a need for the system to
be generalizable if it is to be used in a variety of real-world settings.
Namely, shoulder posture detection using images obtained from
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our device will need to be robust against changes in factors like the
environment, size and shape of shoulder, body type, and clothing
color and texture. However, as other works have shown that gen-
eralization across such factors can be achieved with a sufficiently
large dataset [4, 27], we choose to assume that the same holds for us.
Additionally, for simplicity, only one camera (the left camera, and
thus the left shoulder) was used for shoulder posture recognition
throughout our experiments.

4.1 Experiment 1: Shoulder Posture
Recognition

Our first experiment begins with collecting images of the partici-
pants’ shoulders using our proposed device. The data collected was
then used to train our recognition model and test the feasibility of
our system.

4.1.1 Participants. We collected data for shoulder posture recog-
nition from nine participants (nine males, 22 to 25 years old). No
participants had any history of shoulder diseases.

4.1.2 Procedure. We began this experiment with the acquisition
of shoulder images for six different shoulder postures for each
participant. We developed a system to automatically give voice
instructions to the participants and collect data. Voice instructions
were conveyed to each participant through the speakers embedded
in our headphone-shaped device and image data was simultane-
ously acquired from the cameras in the same device.

Prior to the experiment, participants were briefed on the kinds
of shoulder postures they would be asked to take and were allowed
to practice the postures. When briefing the participants the exper-
imenter did not give them precise instructions as to the posture
they should take. Instead, participants were allowed to take on the
posture they thought best fit the description they were given. At
this stage, participants were also instructed to not turn their head
during the experiment and to move with their head and body orien-
tation locked together. Because our proposed system observes the
shoulders from the side of the head, any relative motion between
the head and the shoulders can cause a problem in shoulder posture
recognition. For example, preliminary experiments by the authors
showed motion blur in the shoulder images during head rotation,
which rendered the shoulder unrecognizable. After the explanation,
participants were asked to wear the sensing device as they would a
pair of headphones. The experimenter visually confirmed that the
participants were wearing the device appropriately before begin-
ning the experiment to minimize extreme variations in the way the
device was worn.

In each recording session, the participant was asked to perform
the six different shoulder postures in turn with both shoulders
while moving freely inside the room with hands relaxed at their
sides. They were asked to walk around in order to obtain data with
many different backgrounds. It should be noted that participant
body postures did not change significantly during each experiment
(i.e., no participants sat or crouched). In each recording session,
the shoulder postures were presented to the participant in a pre-
defined order (REF, UP, FRONT, BACK, UPANDFRONT, and then
UPANDBACK). The participant kept each shoulder posture for
approximately 17 seconds (500 frames at 30 frames per second) for

a total recording time of approximately 100 seconds. Ten recordings
were collected for each participant. This resulted in a total of 30,000
image frames being collected per participant. It should be noted
that the device was not taken off at any time during the experiment.

Video footage was collected using a laptop connected via USB
to the cameras. To avoid having participants trip over wires, the
experimenter followed the participant while holding the laptop.
The USB cable connecting the cameras to the laptop was made long
enough to not impede the motion of the participants. After col-
lecting video footage, we extracted images from the video streams.
After completing the experiment, we had obtained a total of 270,000
images from each camera constituting 45,000 images for each shoul-
der posture. The neural network was then trained on this data and
tested to demonstrate the feasibility of our proposed system.

4.1.3 Usability Survey. After each participant completed all of
their recordings, we informally asked them if any of the shoul-
der postures were particularly difficult to assume. All participants
answered that none of the shoulder postures were particularly diffi-
cult. However, some participants noted that they felt little difference
between the UPANDFRONT and FRONT posture and the BACK
and UPANDBACK postures. Also, some participants reported that
our headphone-shaped device shifted slightly during data collec-
tion, indicating that the wearability of the prototype needs to be
improved in future work.

4.1.4 Result. To evaluate the feasibility of our proposed system
and its ability to recognize shoulder motions in unknown users, we
trained and evaluated our recognition model using the leave-one-
out cross-validation approach. Namely, we selected one participants’
data to be the test set and trained/validated the model with data
obtained from the other participants. After selecting the testing
participant, the other participants’ data was splitted according to a
training:validation data ratio of 9:1. This was repeated nine times,
once for each participant’s data set being the test set. In each case,
we first trained the neural network model for up to 20 epochs. At
the end of the training, we chose to make use of the historically
best model, evaluated based on its accuracy on the validation data.
Finally, we tested the selected model on the test data to obtain a
measure of accuracy for the model at hand. Since the training data
did not include any test data, the result of the final accuracy test can
be seen as a measure of the robustness of the model to unknown
subject data.

The results, summarized in Figure 4 as confusion matrices, indi-
cate that there is significant variation in the recognition results. The
average recognition accuracy across participants was 69% (53.8%
- 83.8%, sd: 9.0%). The values shown in the confusion matrix on
the left are averaged values across all participants. The middle and
right matrices are for the best and worst performing participants,
respectively. The confusion matrices show that the system had the
greatest success detecting the REF posture but had the lowest accu-
racy with the UP posture. We also see that UPANDFRONT had a
tendency to get mislabeled as UP or FRONT and that UPANDBACK
had a tendency to get mislabeled as UP or BACK.

We suspect that this issue arises from variations in shoulder
motion and size, the device location, and neck length. The fact
that the worst overall accuracy was observed when the test par-
ticipant was the one whose body shape was most different from
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Figure 4: Confusionmatrices showingmodel recognition ac-
curacy using leave-one-out cross-validation. Shown are the
average performancematrix (left), the best performancema-
trix (center), and worst performance matrix (right).

the other participants supports this theory. The shifts in the device
during experiments may also have contributed classification er-
rors. Finally, a manual check of the images showed that there were
some instances where the participant turned their head indepen-
dent of their body despite the instructions to the contrary. Images
taken during these instances may have contributed to lowering the
recognition accuracy.

4.2 Experiment 2 : Real-Time Shoulder Input
In the second experiment, we made use of an estimation model,
trained using all of the data acquired in Experiment 1, and inves-
tigated whether real-time shoulder inputs were possible. We also
sought to identify whether participants could learn how to perform
shoulder-based operations without visual feedback.

4.2.1 Participants. There were twelve participants in this study
(11 males and 1 female, aged between 22 to 34 years old). Nine of
the participants also participated in Experiment 1. This experiment
was conducted on a different day than Experiment 1.

4.2.2 Procedure. As with Experiment 1, this experiment began
with a briefing on the shoulder postures the participants would
be asked to assume. Again, participants were not given precise
instructions but were allowed to take on the posture they thought
best fit the description they were given. A detailed explanation of
the experimental system was then given to the participants. The
experimental system consisted of the headphone-shaped sensing
device, a computer, and a display (See Figure 5). Participants fol-
lowed instructions on display to take the displayed shoulder posture.
Participants were also told that they would need to focus their gaze
on the screen they were seated in front of, for the duration of the
experiment. This instruction was given to prevent head motion and
motion blur.

For every trial during the experiment, the system visually pre-
sented words representing the desired shoulder posture to the par-
ticipant on the display and presented corresponding voice com-
mands through the speakers embedded in the headphone-shaped
device as well. The participants were allowed three seconds to as-
sume the desired posture. A command to relax was then given to
the participants (both visually and audibly). The next posture com-
mand was given another three seconds later and marks the start
of a new trial. Finally, the system could optionally also display the
real-time shoulder posture recognition result, giving the participant

Figure 5: A participant performing Experiment 2. Partici-
pants followed the displayed instructions and took the ap-
propriate shoulder posture. The picture shows the partici-
pant in the second session, where the system indicated the
real-time estimated posture.

visual feedback regarding the posture they were taking. We note
that the frame rate of our recognition system is above 9 fps. This
is enough to allow participants to take the indicated postures and
control supernumerary appendages in real-time, as is shown in our
demonstrations (Section 5).

A total of three sessions, each containing 60 trials were conducted
per participant. The trials in each session were such that each of the
six postures would be done ten times each, but in a random order.
The first session had the participants conducting trials without real-
time visual feedback. In the second session, the participants were
provided with visual feedback and instructed to use the feedback
to adjust their shoulder posture. Finally, in the last session, the
visual feedback was turned off again. After completing all three
sessions, participants were given a simple questionnaire asking how
difficult they felt it was to take on shoulder postures and whether
the shoulder posture recognition results seemed to match their
intent.

4.2.3 Result. By comparing the participant shoulder posture data
acquired to the desired postures displayed, we were able to identify
whether participants were successfully able to assume the desired
shoulder posture. We chose to deem a trial a success if the shoulder
posture immediately before the relaxation command matched the
previously given shoulder posture command. Figure 6 shows the
distribution of success rates across participants for each of the three
sessions.

The average success rate in each session was 73.5%, 84.9%, and
78.9% respectively. A one-way ANOVA test showed that there was a
significant difference between the results obtained across the three
sessions (F = 4.16,p = 0.024). A Tukey-Kramer test showed that a
significant difference only existed between the first and second ses-
sions. Results from the questionnaire showed that the participants
found it difficult to assume postures that raised the shoulder, such
as UPANDFRONT and UPANDBACK, while seated. Additionally,
there were several comments indicating that the system would
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*
* : p<0.05

Figure 6: Results fromExperiment 2, real-time shoulder pos-
ture classification, in three conditions: without real-time vi-
sual feedback [Blind-1]; with feedback [Visual feedback];
without feedback after having visual feedback [Blind-2].

almost never recognize certain shoulder postures they took. The
UPANDBACK posture was often mentioned as being difficult to
assume.

In this experiment, we showed that our system can perform accu-
rate, real-time shoulder posture classification. Namely, participants
were able to achieve accurate control inputs without significant
training. As noted earlier, this was the first experiment some of the
participants participated in. Even then, the lowest overall accuracy
recorded in the with-feedback part of this experiment was 70%.
While lower accuracies were observed when no visual feedback
was presented, the results still indicate that participants were able
to achieve the intended results. This was all despite the shoulder
recognition model being a general one not tailored to the body
shape of any user. These results, as well as the fact that participants
of Experiment 1 and 2 likely did not wear the device identically in
both experiments, suggest that our system has robust recognition
capabilities and could be used in a practical setting. However, the
system is not without its flaws. Some participants commented that
they were unable to perform shoulder postures such as UPAND-
BACK. As in Experiment 1, this may be due to physical differences
among the participants.

This experiment also demonstrated that participants can signifi-
cantly improve their accuracy given visual feedback. The partici-
pants were able to use the visual feedback to adjust their shoulder
postures during the trial to match the desired posture. However,
while some improvement was observed after the visual feedback
was removed, it was not a statistically significant improvement
over pre-feedback accuracy. From this, we infer that there is a pos-
sibility that a training session could improve participant accuracy,
but further experimentation and analysis is necessary to reach a
definitive conclusion.

4.3 Experiment 3 : Robustness to Body Posture
Changes

Through Experiments 1 and 2, we showed that it is possible for
our system to estimate the user’s shoulder posture when they are
seated and their arms are at their side. In this third experiment, we

Figure 7: The four different body postures in Experiment 3:
(a) Standing; (b) Sitting; (c) Sitting with hands fixed at elbow
height; (d) Sitting with hands fixed at shoulder height.

investigated how the participants’ body posture can affect the esti-
mation results. In particular, we focused on several body postures
where the hands were fixed in space (as they might be during a
task). By examining the system’s performance in these postures,
we saw how our system could perform in parallel task scenarios.

4.3.1 Procedure. The participants in this experiment were identical
to those in Experiment 2. The experimental system used for this
experiment was also identical to the one developed for Experiment
2. The variable in this experiment, however, was the participant’s
body posture. Namely, we collected data for the four postures shown
in Figure 7 in a random order while participants followed on-screen
instructions to assume the indicated shoulder posture. The body
postures were 1) standing, 2) sitting, 3) sitting with hands fixed at
elbow height, and 4) sitting with hands fixed at shoulder height. The
latter two postures were selected to resemble postures a user might
take when doing a manual task (e.g., while typing on a keyboard
or holding a box). For the fixed hand postures, participants were
asked to hold onto handles placed in front of them. The distance
to the handles was set based on each participant’s arm length (i.e.,
70% of the acromion to ulnar styloid process distance). It should
also be noted that the data obtained in Experiment 2 was used for
the sitting posture.

As in Experiment 2, participants were given three seconds to
assume the posture and 3 seconds to relax before being instructed to
take the next posture. Participants performed 60 trials (six postures
times ten repetitions in a randomized order) in each body posture.
It should be noted that participants were provided with visual
feedback and were instructed to use the feedback to adjust their
shoulder posture. After each experiment, participants were asked
to fill out a questionnaire asking how difficult it was to take each
shoulder posture and whether the system appeared to recognize
their intended posture.

4.3.2 Result. As in Experiment 2, we checked whether the par-
ticipants’ shoulder postures estimated by our estimation model
matched the instructions displayed on the screen. The percentage
of correct responses for each of the four body postures examined
in this experiment are shown in Figure 8. The percentage of correct
responses obtained in the second phase of Experiment 2 was used
as the accuracy of the sitting and idle condition. The mean accu-
racy of the standing and seated postures, when hands were not in
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use, were 90.1% and 84.9%, respectively. The mean percentages of
correct responses were 75.6% and 61.1% for the seated participants
with hands fixed at elbow and shoulder height, respectively.

A one-way ANOVA was used to determine whether there was a
significant difference in the percentage of correct responses given
between the four body postures. A significant difference was found
with statistics F = 33.9,p = 1.6 ∗ 10−11. A post-hoc analysis us-
ing the Tukey-Kramer test revealed that there was no significant
difference in accuracy between the seated and standing postures
where the hands were free. All other differences were significant.
Responses to the questionnaires revealed that participants had dif-
ficulty assuming shoulder postures where the shoulders needed to
move away from where their hands were fixed in space (i.e., the
BACK and UPANDBACK postures).

In previous experiments, we demonstrated the possibility of
giving control inputs using shoulder postures. In this experiment,
we investigated whether participants can assume various shoulder
postures, and thus give control inputs, even when in restrictive pos-
tures (e.g., the hand position is fixed). The results, Figure 9, showed
that participant accuracy was high for certain shoulder postures
(e.g., REFERENCE, UP, FRONT postures), and that redundancy of
upper limbs allows the control to be performed even when the hand
was fixed. On the other hand, participant’s accuracy was signifi-
cantly lower in the two conditions where the hands were fixed than
in the other conditions.

We believe the main reasons for the deterioration in accuracy in
the fixed-hand postures lie in limitations of body structure. Specifi-
cally, we believe restricting the hand position resulted in a reduced
range of motion and a shift in the resting position of the shoulder
(i.e., there was a change in the mean and reduction of the variance
of the shoulder position). A reduced range of motion resulting from
the restricted hand position decreased the participant’s response
accuracy overall as they were unable to assume the same shoulder
postures they exhibited when training the recognition model (see
the lower two confusion matrices in Figure 9). Restricting the hands
had a particularly large effect on the UPANDBACK and BACK pos-
tures, which required shoulder movements away from the hands,
due to the relatively long distance we fixed the hands at (70% of the
acromion - ulnar styloid process distance). Participant comments
and the confusion matrices indicating many BACK-REF errors and
UPANDBACK-UP errors support this hypothesis. A shift in the
resting shoulder position, in contrast, was only clearly observed in
when the hands were fixed at shoulder height. In this body posture,
the shoulder moves forward and is typically recognized as FRONT
when the participant is at rest (i.e., when they attempt to present
the REF state). The confusion matrix we obtained for the "Sitting
- Shoulder" posture, bottom right in Figure 9, confirms that the
REF-FRONT and UP-UPANDFRONT errors are prevalent in this
position. Further investigation will be needed to investigate when
control input using redundancy is possible.

Further investigation is also necessary to determine whether
a unique estimation model will be required for each individual
user. Comparing the confusion matrices from Experiment 1, Figure
4, and from the standing posture of Experiment 3, Figure 9, we
can see that the response accuracy of UPANDBACK posture did
not improve despite the availability of visual feedback. From this,
and participant comments indicating that some shoulder postures

Figure 8: Results fromExperiment 3: real-time shoulder pos-
ture classification accuracy in four body postures. Green tri-
angles represent the mean values.

Figure 9: Confusion matrices from Experiment 3 showing
recognition accuracy using our estimationmodel in four dif-
ferent body postures.

were not recognized at all, we conjecture that some postures are
difficult to reach even without any restrictions on body posture.
Variations in the range of motion should, thus, be taken into account
in the design of future shoulder-based input systems. One approach
to resolving this issue is to achieve input with minimal shoulder
motion. Another solution is to acquire more data across a range
of body types, ages, and genders, and use them to train a, possibly
more sophisticated, recognition model. However, it should be noted
it is not the intent of this study to propose a robust input method.
We only show the feasibility and possibilities of shoulder-based
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input. Future work will endeavor to further develop our approach
into a robust control method by, for example, extending the data
collection to a wider range of upper limb postures and body types
in an effort to achieve robust shoulder posture estimation.

5 APPLICATION & DEMONSTRATION
In this work, we have shown that it is possible to make use of upper
limb redundancy to enable control input without interfering in hand
operations. In this section, we suggest four example applications
of supernumerary appendages which become feasible given our
system, shown in Figure 10. These applications were implemented
and tested to verify that they are realizable.

Figure 10: Photos of applications and demonstrations: (a)
Robotic Arms; (b) Robotic Fingers; (c) Robotic Tentacles; (d)
Virtual Appendages.

5.1 Robotic Arms (SRLs)
First, we show a demonstration wherein a user controls a set of
SRLs. Figure 10a shows our system is being used to operate an SRL
to press an elevator button while the user’s hands are busy holding
a box. This is one scenario in which SRLs are commonly expected
to be useful [17]. Our implementation of this application enabled
a user to move a robot arm up-down and forward and backward
using the shoulder.

5.2 Robotic Fingers
Figure 10b shows a demonstration of a robotic finger attached to
the human hand. This finger extends the functions and capabilities
of the human hand as a sixth finger [35, 42]. This finger can provide
additional dexterity as it can be manipulated independently of the
user’s other finger movements. In our working prototype, the two
axes of the robotic finger were manipulated using the front, back,
and diagonal shoulder postures as input.

5.3 Robotic Tentacles
Figure 10c shows an application wherein our system is being used
to manipulate robotic tentacles. Such robotic tentacles composed
of several serially connected actuators suggest the possibility of

body extension unconstrained by existing body structures [2, 32].
In our case, we placed tentacles on the back of the hand to allow
for additional object grasping. As in the other demonstrations,
this tentacle can be used while walking. To enable operation of
the tentacle, we mapped forward and backward movement of the
shoulders to the opening and closing of the robotic tentacle. Using
the tentacle, we allowed the user to grasp objects with the tentacle
without occupying the hands.

5.4 Virtual Appendages
Figure 10d shows our system being used to operate a set of virtual
wings, a kind of virtual appendages. The wings flap in response to
shoulders movements picked up by our system. In this scenario,
the wings are being operated while the user is performing com-
plex maneuvers with their hands (i.e., juggling a set of three balls).
This demonstration suggests that our system could be applied for
performance purposes in addition to practical uses. Furthermore,
this demonstration shows that our system is compatible with use
in real, virtual, and mixed reality scenarios.

6 DISCUSSION
In this section, we will first discuss the conceptual contributions of
our proposed system. Then, we will discuss the limitations of our
system as well as future work that might develop from the system
and the concepts it embodies.

6.1 Conceptual Contributions
In this paper, we proposed a novel wearable sensing system which
enables the independent operation of supernumerary appendages.
The system takes a powerful approach which takes advantage of
the mechanical redundancy present in the human body structure.
While our system focuses on exploiting upper limb redundancy
and the degrees of freedom it gives to the shoulder, we believe that
this approach could be applied to the elbows, head, or lower limbs.
Our first conceptual contribution is, thus, highlighting the potential
of exploiting mechanical redundancy in the human body. Namely,
that it can be exploited to enable supernumerary appendage control
that minimizes the performance impact on the rest of the body.

Our second conceptual contribution is showing that our ap-
proach to supernumerary appendage operation is not task or ap-
pendage dependent. Our applications and demonstrations showed
that our approach could be used to operate a variety of physical and
virtual supernumerary appendages. This is in contrast to previous
works which typically focus on task-dependent inputs [17].

Finally, our work has shown the potential of shoulder-based
input. The shoulder has many aspects of expression which humans
can intentionally control due to the presence of the scapula. For
example, besides moving the whole shoulder, it is possible to slide
and reorient the scapula as well as tense the surrounding muscles.
Being able to sense these expressions could enable delicate, precise,
and complex inputs. While we have only focused on sensing the ex-
ternally visible shape of the shoulder in this work, future work may
consider developing methods for extracting more information from
the shoulder by, for example, applying on-body sensing method to
enable at will control of supernumerary appendages.
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6.2 Limitations
Despite the potential of our current system, it still has multiple
issues and limitations which must be resolved. First, there is the
issue of mapping shoulder motion to supernumerary appendage
control inputs. In more traditional methods of appendage control,
it is common to have six input dimensions for controlling the six
degrees of freedom (three for position and three for orientation)
of the end effector. Having six reliable input dimensions is chal-
lenging given our current system. Since we were able to realize six
inputs, we were only able to demonstrate operation of a robotic
arm along two positional dimensions independent of the rest of the
body. Additional issues may arise due to all of our control inputs
being in the saggital plane. Namely, control of appendages along the
coronal plane may require significant training before they become
usable by users. To enable control of supernumerary appendages
with higher degrees of freedom, we may consider applying con-
trol dimensionality reduction techniques such as those applied to
prosthetic and robot arm control [5, 7]. Also, in this study, it is
necessary to hold the input posture when giving a command. This
can be tiring when using our system for an extended period of time.
There are several ways to address this problem. One solution for
this issue is to implement trigger inputs that hold a command until
an opposite input is given. Another solution is to minimize the
amount of shoulder motions during input.

The second major issue is regarding the limitations on the types
of SRAs which can be used with our system. Since our method uses
visual data of the shoulder to infer control inputs, any SRA which
may cover the shoulder cannot be used with the system. SRAs, for
example, which are worn like a backpack can significantly impact
the input accuracy as the shoulder straps interfere with shoulder
sensing. For such SRAs, attaching a marker to the strap and utilizing
an algorithm that detects the marker pose may result in improved
performance.

Finally, there are some issues that must be resolved with the sens-
ing device. While our camera-based approach resulted in robustness
against differences between participants, it carries with it many
problems which are common to this kind of approach. Using a cam-
era can lead to, for example, privacy violation if a person is caught
camera and recognition being sensitive to changes in lighting. Since
SRAs are intended to be used in a variety of situations [40], our
sensing device should be applicable both in a variety of scenarios
and for a variety of people. Another issue with the sensing device
is that its field of view changes with head rotations. This shifts the
shoulder position in the field of view and introduces motion blur
which can be problematic for detecting shoulder postures. This
latter issue could be resolved by increasing the camera framerate
or by adding an IMU to detect head motions. The other issues may
be resolved by introducing methods from previous works which
encountered similar issues [4, 10].

6.3 Future Work
There are several possible directions for future research. One direc-
tion is to further our measurement system and its capabilities. An
important issue to be addressed in future work is the generalization
of the sensing system. To increase the generalized performance of
the system, it is necessary to acquire training data from a variety of

users and usage situations. This might include data from users in
different clothing, reattachment positions, head postures, and vari-
ous arm postures. Using this data, we believe that we can construct
a robust recognition system and expand the situations in which we
could allow for SRA operation. Another direction for furthering our
system is enabling independent operations with each shoulder as,
in this work, it was assumed that both shoulders moved in tandem.
This would increase the degrees of freedom available to the user
and enable more complex control. Another extension of the cur-
rent work would be looking at continuous shoulder position inputs
instead of discrete ones. Finally, the addition of other sensors (e.g.,
IMUs and EMGs) could be used to extend the sensing capabilities
of our camera-based approach to sensing shoulder posture.

We would also like to conduct a usability study of SRA opera-
tions using shoulder input. In this study, we showed the possibility
of multitasking with SRA operations by using shoulder motions.
However, it has not been sufficiently investigated whether user
tasks and SRA tasks can actually be performed independently. In
future work, it will be necessary to investigate the psychological
and physical loads on the user and ease of use during multitasking.

Another topic for future work is to investigate the human side
of redundancy-based input. We could, for example, investigate
how participants learn to use the system. We observed some learn-
ing through the presentation of visual feedback in Experiment 2.
However, learning could be accelerated by providing multimodal
feedback, as is suggested by other works investigating SRLs and
extra fingers [18, 22].

Finally, we could explore other applications for our proposed
sensing system. While we have focused on controlling systems
related to human augmentation (i.e., SRAs and VR avatars), our
system could be applied more broadly in the field of HCI. It could,
for example, be used in the context of rehabilitation, as a general
purpose input system, or for the control of prosthetics.

7 CONCLUSION
In this study, we proposed a novel approach for realizing indepen-
dent control of supernumerary appendages. The most novel part
of our approach is its exploitation of upper limb redundancy to
achieve control inputs without interfering with the existing ap-
pendages. Our approach consists of capturing top-down visual
data of the shoulder and recognizing shoulder postures using a
neural network classifier. To capture the visual data, we created a
headphone-shaped sensing device making use of two fisheye lens
cameras to capture a large field of view. The neural network we
used for classification was based on ResNet-50. Through user ex-
periments, we demonstrated the feasibility and potential of our
approach. Furthermore, through a set of demonstrations, we have
shown a wide range of human augmentation applications that can
be realized with our approach. Future work will further explore
independent control methods that exploit mechanical redundancies
present in the human body.
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