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Abstract

Voice conversion (VC) enables us to change speech while pre-
serving the linguistic information and is expected to play a sig-
nificant role in augmented human communication. Recently,
deep neural network (DNN)-based VC has been attracting at-
tention because it can synthesize high-quality speech. How-
ever, existing methods typically assume offline processes (i.e.,
analysis, conversion, and synthesis) and cannot be directly ap-
plied to real-time VC. Therefore, we propose an implementa-
tion method of DNN-based VC that works online with low la-
tency. We also propose audio data augmentation to improve the
speech quality of real-time VC. Finally, we develop a mask-
based real-time VC device to improve robustness against back-
ground noise. Experimental results demonstrate that 1) the pro-
posed real-time VC works with 0.50 of the real-time factor, 2)
the proposed data augmentation improves speech quality, and
3) the proposed mask-based VC device is more robust to noise
than a standard microphone-based VC device.

Index Terms: deep neural network, DNN-based voice conver-
sion

1. Introduction

Voice conversion (VC) [1, 2] is a technique to transform speech
while preserving linguistic information and having the desired
para-/non-linguistic information. It is expected to play a sig-
nificant role in elevating human communication beyond their
physical constraints. Recent approaches to VC include vari-
ous machine learning techniques that produce high-quality con-
verted speech. Moving beyond conventional Gaussian mixture
model (GMM)-based VC [1, 2], deep neural network (DNN)-
based VC [3, 4] is attracting attention these days. Thanks to the
non-linear transformation of DNNs and the techniques shared
among different research fields, deep architectures can now per-
form higher-quality sequence-wise conversion. However, since
these systems use offline or time processes, (e.g., WORLD [5]-
based feature analysis and bi-directional recurrent neural net-
work [4]), they cannot be directly applied to online and low-
latency conversion.

In this paper, we propose an implementation method of
DNN-based VC that works online with low latency. The fun-
damental idea is inspired by GMM-based real-time VC [6], and
we introduce several techniques for efficient conversion. To-
wards the use of VC in artificial delayed auditory feedback, we
implement VC with a 50 ms latency that is not noticeable by
the speaker. To improve the speech quality of the proposed real-
time VC, we propose three methods of audio data augmentation
that artificially augment training data. Two of these methods,
pitch shift and time stretch [7], make the real-time VC robust
to perturbations of human speech production, and the third one,
time shift, makes it robust to perturbation of the start time of
short-time Fourier transform. For the construction of a real-
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time VC device, we need to ensure that it is robust to back-
ground noise if we want it to have practical use in actual en-
vironments. One way to make real-time VC robust to noise is
the use of audio data augmentation with the artificial injection
of a variety of noise [8]. However, making it robust to non-
stationary noise (e.g., another person’s voice) requires sequen-
tial compensation and some delays, which is unsuitable for the
proposed real-time voice conversion. Therefore, we have devel-
oped a mask-based real-time VC device that physically blocks
noise fed into a microphone. Experimental results demonstrate
that 1) the proposed real-time VC works with 0.50 of the real-
time factor, 2) the proposed data augmentation improves speech
quality, and 3) the proposed mask-based VC device is more ro-
bust to noise than a standard microphone-based VC device.

2. Implementation of DNN-based real-time
voice conversion

In this section, we describe how to implement DNN-based real-
time voice conversion that is executable with low latency. The
framework consists of analysis, conversion, and synthesis steps,
as shown in Fig. 1. The analysis step extracts speech features
from the source speaker’s speech waveform. The obtained fea-
tures are then converted into the target speaker’s features by us-
ing DNNs in the conversion step, and the synthesis step syn-
thesizes the converted speech waveform. All the processes are
performed recursively with low latency. The following sections
explain the details of the three steps.

2.1. Analysis step

Speech features, mel-cepstral coefficients, power, and Fp are
first extracted from an input speech waveform. As in conven-
tional DNN-based VC, the use of state-of-the-art spectral fea-
ture analyzers, such as STRAIGHT [9] and WORLD [5], is re-
quired for high-quality feature analysis. However, they come
at a high computational cost and require time delays'. As an
alternative, we use simple fast Fourier transform (FFT)-based
mel-cepstral coefficient analysis [10], the same as [6]. We can
compensate for the quality disadvantage of FFT-based analysis
by using our proposed audio data augmentation, as we describe
in Section 2. We refer to this feature as FFT mel-cepstral co-
efficients in the following sections. Note that state-of-the-art
feature analyzers can be used for extracting the target speaker’s
features, as the process is not included at run-time.

Next, trajectory smoothing [11], which removes the mod-
ulation spectrum components [12] of high modulation frequen-
cies, is applied to the extracted FFT mel-cepstral coefficient se-
quence. The higher modulation frequency components are neg-

!For example, WORLD [5] uses a window function with the length
of 3/Fp ms. If Fy = 70 Hz, the window length is approximately
43 ms.
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Figure 1: Proposed real-time DNN-based VC.

ligible for speech perception and difficult to be modeled with
DNN:s, and the trajectory smoothing can improve the prediction
accuracy of speech features. In [11], a non-causal low pass fil-
ter (LPF) is used for the removal, but we use a two-tap finite
impulse response (FIR) LPF for the purpose of online and low-
delay conversion. The FIR filter has values at frames -1 and 0
(i.e., previous and current frame).

2.2. Conversion step

Speech features of the target speaker are estimated from speech
features of the source speaker. We conduct the following four
transformations.

1. From source speaker’s FFT mel-cepstral coefficients to
target speaker’s WORLD mel-cepstral coefficients

2. From source speaker’s FFT mel-cepstral coefficients to
target speaker band-averaged aperiodicity

3. From source speaker’s log-scaled Fp to target speaker’s
log-scaled Fy

4. From source speaker’s power to target speaker’s power

The third and fourth transformations are linear, as used in the
conventional GMM-based VC [2], and the first and second use
DNNSs. In the first transformation, we use multi-frame (cur-
rent £C frames) FFT mel-cepstral coefficients as input and
one-frame WORLD mel-cepstral coefficients as output. Since
the input and output are similar types of features, a DNN with
input-to-output residual architecture [13] efficiently works for
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the feature conversion. Similarly, we use multi-frame FFT mel-
cepstral coefficients as input and one-frame band-aperiodicity
as output in the second transformation.

To train DNNs, we use the mean squared error (MSE) for
the loss function. Given the target speaker’s speech feature se-
quencey = [y!, -, ¥/, -~ ,yr]  and the predicted feature
sequence § = [§1 ,--- ,T¢ , - ,§7] ', the loss function is

L(w.9) = 25— 9) (@~ v) n
where ¢ represents the frame index and 7' is the total num-
ber of frames. Before the training, trajectory smoothing [11]
is performed on the target speaker’s WORLD mel-cepstral co-
efficients in order to improve prediction accuracy. Note that,
theoretically, the proposed architecture runs regardless of the
DNN’s training method, which allows us to improve the model
independently. For example, although we did not adopt in the
experiment, generative adversarial network (GAN) [14]-based
training [15] could be utilized for improving quality in con-
verted speech without increasing computation costs at run-time.

2.3. Synthesis step

A waveform is synthesized from the converted speech features.
As in the conventional method [6], recursive maximum like-
lihood parameter generation (R-MLPG) [16] is applied to the
converted WORLD mel-cepstral coefficients. The covariance
matrix used for the R-MLPG is calculated in advance [17]. A
speech waveform is generated using the WORLD’s recursive
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waveform generation algorithm [5]. Hereinafter, let M be the
number of buffer frames in the R-MLPG algorithm and W be
that in the WORLD’s generation algorithm.

2.4. Algorithm latency

Here, we calculate the algorithm latency of the proposed DNN-
based real-time VC. Supposing that the frame shift is 5 ms,
frame length is 25 ms, C = 2, M =3, W =3 (W =3
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covers the length of a one-pitch waveform of 70 Hz of Fjy.), and
the algorithm latency of the analysis, conversion, and synthe-
sis steps are 10 ms, 10 ms, and 30 ms, respectively. The total
latency is 50 ms (see Fig. 1).

3. Audio data augmentation for DNN-based
real-time VC

Data augmentation is a way to improve the performance of
DNN:s. It works by padding artificial data and utilizing the fact
that a DNN’s performance changes sensitively according to the
amount of training data [18]. It is widely used for speech recog-
nition [7] and acoustic event classification [19, 20, 21]. In this
paper we apply two methods (pitch shift and time stretch) [7]
to make the proposed VC framework robust to perturbation of
human speech production. Furthermore, we propose another
method (time shift) to tackle a drawback of the FFT-based mel-
cepstral analysis we used in Section 2. Figure 2 shows the origi-
nal waveform and the waveforms processed with each data aug-
mentation method.

3.1. Pitch Shift (P-Sh)

Even when a single speaker speaks the same text, the pitch tra-
jectory will be different each time. For training data augmen-
tation, we use the WSOLA algorithm [22] and waveform re-
sampling [23] to slightly change the pitch of the source and tar-
get speaker’s waveforms. The left of Fig. 2 shows the original
power spectrum (blue) and the one shifted a whole tone.

3.2. Time Stretch (T-St)

As discussed in Section 3.1, we introduce data augmentation by
time stretch to ensure robustness to speech speed perturbation.
The WSOLA algorithm [22] is used for the stretch. The middle
image in Fig. 2 shows a case in which a waveform (red) is sped
up by 1.05 and thus is shifted to the right of the original one
(blue).
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Figure 3: The proposed device. A small microphone is included
in the mask and connected to a laptop PC.

3.3. Time Shift (T-Sh)

The start time of the frame analysis influences the power spec-
tra (and also mel-cepstral coefficients). Feature analysis in VC
must be robust to the start time. For example, WORLD [5]
designs a Fp-adaptive window function such that the resulting
spectrum is theoretically independent of the start time of anal-
ysis, but this framework is unsuitable for real-time VC, as ex-
plained in Section 2. Instead, we propose a data augmentation
method where the start time of FFT-based mel-cepstral analysis
is shifted within the frame shift length. For example, setting the
frame shift length to 5 ms, we set an offset of the start time with
arange of & 2.5 ms.

4. Noise-robust DNN-based real-time VC
with mask-shaped device

To achieve a real-time VC system for augmented human com-
munication, the system should be usable in noisy environments.
There are two possible approaches to this: adding noise sup-
pression before VC or training acoustic models using noisy
speech. While the former approach (e.g., monaural speech en-
hancement [24, 25]) performs noise suppression with low la-
tency, the noise suppression works only in limited cases. Also,
while the latter approach (e.g., data augmentation using the arti-
ficial injection of a variety of noise [8]) performs a highly robust
noise suppression, it requires heavy computation due to deeper
architectures for sequential compensation (e.g., suppressing an-
other person’s voice).

Therefore, we have developed a real-time VC device that
is robust against noise by physically preventing noise contam-
ination. Figure 3 shows the proposed device. A monaural mi-
crophone is embedded at the top of the device and connected
to a laptop PC (for real-time VC) via a cable. The VC user



Table 1: Real-time factor (RTF) of our DNN-based real-time
VC (mean and standard deviation). The processing time indi-
cates a computation time within one frame (5 ms).

Analysis Conversion Synthesis
Processing time [ms] | 0.85£0.092 1.124+0.51 0.57+0.10
RTF 0.17 0.22 0.11

fits the device over his/her mouth to prevent background noise
from contaminating the input speech, thus keeping the conver-
sion quality high. Holding the device very tightly would impede
free movement of articulators, so the user holds the device such
that a tiny gap is present between the device and his/her face.

5. Experimental evaluation
5.1. Experiment settings

We used 100 utterances (approx. 12 min.) of two Japanese
male speakers, the original transcript of which is included in
the Voice Actress Corpus [26]. The sampling frequency was
16 kHz. We used 90 % of the corpus for DNN training and
the remainder for evaluation. The frame shift was 5 ms . The
lengths of the frame and the FFT were 400 (25 ms) and 512,
respectively. The number of dimensions of FFT/WORLD mel-
cepstral coefficients was 40 (Oth-through-39th). The Oth com-
ponent was used for the power component. C', M, W in Sec-
tion 2 were set to 2, 3, 3, respectively. The DNN for FFT mel-
cepstral coefficients to WORLD mel-cepstral coefficients was
multi-layer perceptron consisting of a 195 (39 x 5)-unit input
layer, 2 x 500-unit leaky ReLU hidden layers, and a 78 (39 x 2,
static & delta features)-unit linear output layer. The DNN also
includes an input-to-output residual network [13] that connects
FFT mel-cepstral coefficients at the current frame of the input
layer and static features at the output layer. The DNN for FFT
mel-cepstral coefficients to band-aperiodicity is a single-layer
perceptron consisting of a 195-unit input layer and a 1-unit sig-
moid output layer. The FFT/WORLD mel-cepstral coefficients
were normalized to have zero-mean and unit-variance. Adam
[27] was used as the optimization method. An Intel (R) Core
(TM) 17-3770K CPU @ 3.50 GHz was used in the evaluation
of processing delay, with the aim of showing the capability of
this system in a CPU environment. For the augmentation of the
pitch shift, a total of four patterns of {semitone, whole tone}
{up, down} were applied. As for time stretch, the speech speed
was multiplied by {0.95,1.05}. The offsets of time shift were
set to —2.50, —1.25,0.0, 1.25, and 2.50 ms.

5.2. Computation cost of proposed real-time VC

We calculated a real-time factor (RTF) to determine whether
the proposed VC operates in real time on a single CPU. The
RTF is a value of the computation time divided by the length of
the input waveform. Table 1 summarizes RTFs of the analysis,
conversion, and synthesis steps. While the conversion step us-
ing DNNs took more computation time than the others, the total
RTF was smaller than 1.0. Therefore, we can confirm that our
VC system operates in real time (and with 50 ms of algorithm
latency).

5.3. Effectiveness of proposed data augmentation

We evaluated the effectiveness of the three proposed data aug-
mentation methods in terms of prediction accuracy (Section
5.3.1) and speech quality (Section 5.3.2).
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Table 2: MSEs of trained DNNs.
Without Pitch Time Time All
Augmen-  Shift Stretch Shift Augmen-
tation tation
0.878 0.859 0.858 0.859 0.853

5.3.1. Prediction accuracy

We calculated MSE between the predicted and target WORLD
mel-cepstral coefficients of the evaluation data. The compared
methods are 1) without augmentation (conventional method),
2) pitch shift, 3) time stretch, 4) time shift, and 5) using all of
2-through-4. Figure 4 shows the MSE at each step of DNN
training. The amount of training data was increased by factors
of one, five, three, five, and 35, respectively. The x-axis is the
number of frames used for iterative training. Table 2 summa-
rizes the MSE values after completing the DNN training. Note
that the WORLD mel-cepstral coefficients were normalized to
have zero-mean and unit-variance. As indicated in the figure
and table, there was no big difference among the different data
augmentation methods, but the data augmentation dramatically
improved the conversion performance.

5.3.2. Speech quality

We conducted a preference AB test to evaluate the naturalness
of the converted speech. The compared methods are real-time
VC without and with data augmentation (using all of 2-through-
4 in Section 5.3.1). We presented a pair of converted speech in
random order and had listeners select the speech sample that
sounded most natural. Similarly, a preference XAB test on the
speaker individuality was conducted using the natural speech as
a reference “X.” These tests were done using our crowdsourc-
ing evaluation system. Thirty-five listeners participated in each
evaluation and ten utterances were used per listener.

The results of the subjective evaluation are shown in Fig. 5.
As we can see, both speech quality and speaker individuality
were significantly improved by the proposed data augmentation.

5.4. Robustness against noise

Finally, we evaluated the noise robustness of the DNN-based
real-time VC with the proposed mask-shaped device, using
voices recorded in actual noisy environments. Compared meth-
ods are VC without (i.e., monaural microphone only) and with
the mask-shaped device. We recorded evaluation data in two en-
vironments: an anechoic room (clean environment) and a train
station (noisy environment). The recording in the station was



with Data Augmentation . without Data Augmentation

Naturalness 31.4%
Individuality 34.0%
0% 25% 50% 75% 100%

Preference Score

Figure 5: Results of preference AB test on naturalness and pref-
erence XAB test on speaker individuality (evaluation of audio
data augmentation). Their p-values were smaller than 0.001.

with Mask-shaped Device . without Mask-shaped Device

Naturalness 66.6%
Individuality 69.4%
0% 25% 50% 75% 100%

Preference Score

Figure 6: Results of preference AB test on naturalness and pref-
erence XAB test on speaker individuality (evaluation of mask-
shaped device in clean environment). Their p-values were
smaller than 0.001.

done at Shibuya station in Tokyo, Japan, which is an extremely
busy location where crowds of people mill and chatter.

The preference AB test on speech quality and preference
XAB test on speaker individuality were conducted in the same
manner as in Section 5.3.2. Results for the clean and noisy
environments are summarized in Figs. 6 and 7, respectively.
Unfortunately, our device degraded speech quality and speaker
individuality for the clean-environment recording. This is be-
cause the shape of our device slightly impeded the movements
of articulators. In addition, since the mask-shaped device was
used only for conversion and not for building the conversion
models, the mismatch between the types of speech in training
and inference could have a negative influence on the quality. On
the other hand, the device improved the naturalness for noisy-
environment recording due to the physical prevention of noise
contamination.

6. Conclusion

We proposed techniques and devices for real-time voice conver-
sion (VC). We first showed how to implement deep neural net-
work (DNN)-based real-time VC, which operates in 0.50 of the
real-time factor and with 50 ms of algorithm latency. Second,
we proposed three data augmentation methods to achieve ro-
bustness against perturbation of human speech production and
Fourier transform. Finally, we developed a DNN-based real-
time VC system with a mask-shaped device for use in noisy
environments. Our future work will focus on further eval-
uation, including a comparison of quality with conventional
DNN-based VC and noise suppression, an evaluation with more
speaker pairs, and MOS test. Furthermore, to ameliorate the
quality when the mask is used, applying a filter and developing
the model using the speech recorded with the mask are desired
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with Mask-shaped Device . without Mask-shaped Device

Naturalness 44.3%
Individuality 58.3%
0% 25% 50% 75% 100%

Preference Score

Figure 7: Results of preference AB test on naturalness and
preference XAB test on speaker individuality (evaluation of
mask-shaped device in noisy environment). Their p-values were
smaller than 0.01 and 0.001, respectively.

to be conducted.
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