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ABSTRACT
Explicitly alerting users is not always an optimal intervention, es-
pecially when they are not motivated to obey. For example, in
video-based learning, learners who are distracted from the video
would not follow an alert asking them to pay attention. Inspired
by the concept of Mindless Computing, we propose a novel inter-
vention approach, Mindless Attractor, that leverages the nature of
human speech communication to help learners refocus their atten-
tion without relying on their motivation. Specifically, it perturbs
the voice in the video to direct their attention without consuming
their conscious awareness. Our experiments not only confirmed
the validity of the proposed approach but also emphasized its ad-
vantages in combination with a machine learning-based sensing
module. Namely, it would not frustrate users even though the in-
tervention is activated by false-positive detection of their attentive
state. Our intervention approach can be a reliable way to induce
behavioral change in human–AI symbiosis.

CCS CONCEPTS
• Human-centered computing → Auditory feedback; Interac-
tion techniques; • Applied computing → Interactive learning
environments.
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1 INTRODUCTION
For decades, video-based communication has been expected to take
over face-to-face communication [18, 50]. In particular, schools
have leveraged video-based learning to provide educational op-
portunities for distanced students, as massive open online courses
have done [22, 32]. Moreover, the recent COVID-19 pandemic has
precipitated the transition to video-based communication for the
purpose of preventing infection [11, 28], especially in the context
of education [20, 27]. However, it has been noted that people often
have trouble maintaining their attention in video-based communi-
cations [29, 30], as they can concurrently perform other tasks, like
texting or accessing social media using a smartphone [34].

Considering the increasing demand for video-based learning,
it would be fruitful if computers can help learners pay attention
to a video. Here, recent advances in machine learning techniques
have enabled the automatic estimation of a user’s attention level
from a video of their face [42]. On the other hand, it is not trivial
how to intervene with learners using computers based on the es-
timation result. A straightforward approach is to explicitly alert
them when they seem to not be paying attention to the video, as
Xiao and Wang [51] did. However, unlike the critical situations
targeted in conventional studies of alert designs [9, 36], users of
video-based learning systems would not hesitate to ignore such
alerts, especially when they are focused on side tasks. For example,
Xiao and Wang [51] reported that their intervention approach in
their user study was described as unhelpful by some participants
who were less motivated. In other words, the efficacy of the alerting
approach would depend on the user’s motivation to actively take
part, and such interventions would not be an optimal intervention
for inducing behavioral change.

Looking back to the nature of human communications, we often
change the tone of our voices intentionally to draw listeners’ at-
tention [52]. Based on this observation, we anticipate that we can
help learners return their attention to videos by computationally
changing the tone of voice during video-based learning situations.
This approach is inspired by the concept of Mindless Computing—
behavior-changing technologies that leverage human biases or
unconscious behaviors—proposed by Adams et al. [1]. Given that
Mindless Computing does not consume a user’s conscious aware-
ness to be effective, Adams et al. [1] stated that it does not rely on
the user’s motivation, whereas many of the current persuasive tech-
nologies have a strong reliance on user motivation and are likely to
fail. In addition, the independence from the user’s conscious aware-
ness enables such behavior influencing to work without interfering
with the user’s main task, which suits our situation (i.e., use during
video-based learning).
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Furthermore, we argue that this mindless intervention approach
has a high affinity with sensing modules based on machine learning
techniques. That is, if we explicitly alert users, they can be distracted
and frustrated by misinformed alerts caused by erroneous false-
positive detection, which can lead them to ignore the result of a
machine learning module [13, 15]. On the other hand, the mindless
approach designed based on human nature does not necessarily
consume users’ conscious awareness, and such negative effects due
to false positives can thus be mitigated.

In this paper, we propose a novel intervention approach, Mind-
less Attractor, which computationally leverages the nature of our
speech communication, and examine its effectiveness in the case
of helping users in video-based learning return their attention to
the video. For this purpose, we first determined its requirements
and possible designs so as to reduce the time that users are dis-
tracted in a mindless manner. We then conducted an experiment
to confirm that the proposed intervention was effective in helping
users refocus their attention without consuming conscious aware-
ness. We also combined this mindless intervention with a machine
learning-based sensing module and evaluated its effectiveness in
the context of false-positive detection, in comparison to a conven-
tional alerting approach. The series of experiments presented the
advantages of the proposed approach, especially in combination
with machine learning techniques. Based on the results, we discuss
implications for the HCI community, emphasizing the importance
of the mindless intervention approach in the era of human–AI
symbiosis.

2 RELATEDWORK
To situate our work, we first examine previous literature on in-
teraction techniques for video-based learning, particularly those
focusing on learners’ attention. We then review conventional alert-
based techniques for drawing human attention and discuss why
they would not fit our purposes. We also explore previous studies
regarding the nature of human speech communication, as this is a
foundation of our mindless approach for drawing users’ attention.

2.1 Attention-Related Interaction Techniques
for Video-Based Learning

As mentioned in Section 1, opportunities for video-based commu-
nication are increasing, and many interaction techniques have thus
been proposed to enhance the experience of such communications.
Some prior studies have proposed interaction techniques center-
ing on the context of participants’ attention [16, 39, 51], as it has
been pointed out that people often have difficulty maintaining their
attention during video-based communication [29, 30]. These tech-
niques benefit from the significant effort that has been devoted to
estimating participants’ attentiveness based on visual cues, such as
face movement [42], body postures [54], and gaze [7, 24, 45]. They
then use the estimation results to enhance learners’ performance,
for instance in the case of video-based learning, as it is widely ac-
knowledged that learners’ attention and engagement are strongly
related to their learning performance [4, 16].

For example, Gaze Tutor is a gaze-reactive intelligent tutoring
system for video-based learning [16]. Using a conventional eye

tracker, it estimates the learner’s attention level based on gaze di-
rection by applying a simple rule assuming that off-screen gaze pat-
terns imply distraction. When the system detects that the learner is
not focusing on the video, the tutor agent stops the video and alerts
them explicitly (e.g., by saying “Please pay attention”). Although
their experiment showed its effectiveness in reorienting partici-
pants’ attention, the intervention method left room for improve-
ment, as the authors mentioned in their discussion. Specifically,
they found individual differences in the efficacy of the alert-based
intervention, including that some participants never followed the
alerts. Accordingly, the authors noted that alternate intervention
approaches, including indirect feedback, could be implemented. An-
other example that computationally utilizes the estimated attention
level during video-based learning was provided by Sharma et al.
[39]. Similar to Gaze Tutor, their system provided users with direct
feedback, such as simple red rectangles on the screen, with the
purpose of improving users’ attention.

As can be inferred from these studies, previous research has
mainly considered explicit alerting as an intervention method for
video-based learning. However, the findings from these studies
complement our concern, which is discussed in Section 1 based
on the results of Xiao et al. [51]. That is, such interventions have
a reliance on users’ motivation; they may not work effectively
when we cannot assume that all users are motivated to change
their behavior. In Section 2.2, we will explain why the reliance
occurs based on the discussion by Adams et al. [1], which in turn
motivated us to explore a better intervention approach for video-
based learning situations.

2.2 Alerting Techniques for Drawing Human
Attention

Drawing users’ attention is one of the crucial components of human-
computer interaction, not limited to video-based learning. Many
researchers have dealt with a wide range of topics in this area,
such as Internet advertisements [33], smartphone notifications [40],
and alerting systems [21]. Consequently, previous studies have
developed many methods suitable for individual situations using
diverse perceptual modalities.

One of the most popular strategies is to provide users with visual
stimulation. For example, Red Alert is a visual alerting systemwhich
uses a translucent orange-red flash to mask a screen, designed to
warn pilots potential collisions in air traffic control [36]. Audio
stimuli have also been favorably employed as a means to alert users.
BBeep is a collision-avoidance system that can emit a beep sound to
alert pedestrians around a visually impaired user to clear the way
[26]. Another strategy is the use of the tactile modality. BuzzWear is
a wrist-worn tactile display to notify users on the go by combining
different parameters of the tactile stimulus [31]. As can be observed
in these examples, most systems adopt explicit stimuli to notify
users, assuming that they will take action after their attention is
drawn to the target.

However, Adams et al. [1] pointed out that such alerting strate-
gies would not be optimal when used within persuasive technolo-
gies designed to influence user behavior. Unlike critical situations
(e.g., air traffic control) where it can be expected that users will be
motivated to follow an alert from a computer, not all scenarios for
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inducing behavioral change can assume that users are motivated
to do so. In such cases, an alert that requires the user’s conscious
awareness and effort to work effectively would likely fail due to
lack of motivation or potentially counteract positive aspects of the
intervention by frustrating them. Thus, the authors recommended
the Mindless Computing strategy of leveraging human biases or un-
conscious behaviors, which diminishes reliance on users’ conscious
awareness. It also enables a user intervention without interfer-
ing with users’ ongoing activity, whereas alerting users explicitly
can interrupt such activity. Furthermore, they complimented the
advantage of the mindless approach by mentioning that such in-
terventions have long-term effectiveness, even though users are
aware of the biases behind the interventions [47].

This point is common to the previous studies for video-based
learning in regards to the reliance on learners’ motivation, which
is mentioned in Section 2.1. That is, as conventional alerting ap-
proaches are requiring learners’ conscious awareness to be effective,
they would have an option not to follow the intervention. There-
fore, for the purpose of helping learners return their attention, we
explore a new computational approach that intervenes without
consuming their conscious awareness. This led us to make use of
the nature of human speech communication.

2.3 Speech Communication Techniques for
Drawing Human Attention

Speech is one of the most natural modalities of human commu-
nication. It consists not only of linguistic aspects but also of par-
alinguistic aspects, such as pitch, volume, and speed, which play
an important role in conveying nuance or emotion [44]. Though
the use of paralinguistic aspects is a natural habit that does not
necessarily require our conscious processes [35], it is also a com-
mon practice to intentionally create changes in such paralinguistic
parameters while speaking so as to draw listeners’ attention [25].
The relationship between speech parameters and their effects in
terms of drawing attention has generated considerable research
interest in understanding human speech communication. For ex-
ample, Xu [52] confirmed that an increase in pitch when starting a
new topic can draw listeners’ attention. Moreover, a similar effect
of drawing attention has also been observed in infants hearing
the speech of their mothers, who naturally vary their pitch [41].
The idea that humans unconsciously respond to paralinguistic cues
is further supported by Zatoree and Gandour [55], who verified
that human neural mechanisms are sensitive to such spectral and
temporal acoustical properties.

Based on these results, we speculate that leveraging this nature of
human speech communication by computationally varying speech
parameters can draw listeners’ attention in a natural manner. More
specifically, if a person losing their attention to a video hears speech
with altered pitch or volume, they will naturally respond to such
a change, regardless of their motivation to pay attention. Such
an intervention approach is in line with the concept of Mindless
Computing [1] and thus is expected to work without depending on
users’ motivation. In the following section, we further elaborate on
the rationale for our design of using alterations of human speech
to draw attention in video-based learning situations.

3 MINDLESS ATTRACTOR
In this paper, we proposeMindless Attractor for the purpose of help-
ing users in video-based learning situations return their attention
to the video. Inspired by the concept of Mindless Computing [1], it
leverages the nature of speech communication to intervene with
users. In this section, we present the details of Mindless Attrac-
tor, starting by discussing why the mindless approach should be
considered and what requirements should be fulfilled.

3.1 Why Mindless?
As we stated in Section 1, our research aim is to support video-
based learning, given the growing demand for it, by establishing a
suitable computational intervention for users who are not paying
attention to the video. The difficulty is that we cannot assume all
users to be highly motivated to follow such an intervention for
maintaining attention, which we mentioned in Section 2.2 as the
reason that conventional alerting approaches would not be suitable.
Thus, we need to consider an intervention approach that does not
rely on users’ motivations. In addition, even when a user is not
focusing on the video, intervention approaches that interrupt the
user should be avoided since such approaches might lead them to
miss subsequent content.

These points led us to adopt an approach based on Mindless
Computing [1] that leverages human biases or unconscious be-
haviors to induce behavioral change. Since such an intervention
approach does not consume the user’s conscious awareness to be
effective, it is considered less reliant on their motivation to pay
attention. Moreover, it enables us to design a less interruptive in-
tervention than explicit alerts, as Adams et al. [1] confirmed that
their mindless approach using auditory feedback could influence
people’s behavior when talking without annoying them.

Furthermore, we presume that the mindless approach will reveal
a new advantage when integrated with a sensing module based
on machine learning techniques, as mentioned in Section 1. More
specifically, although machine learning systems enable various
sensing scenarios, humans tend to evaluate such systems’ mistakes
more severely than human mistakes [15]. In addition, the trust that
machine learning systems lose as a result of their failure is usually
greater than the trust they gain from their success [53]. Conse-
quently, people often become less hesitant to override outputs from
machine learning systems after seeing their failures [13]. Moreover,
it has been suggested that people with a high level of cognitive load
will have less trust in interactions with machine learning systems
[56]. These discussions imply the risk posed by the false-positive
detection of the sensing module in intervening with users—that is,
mistakenly alerting them in an explicit manner during video-based
learning situations would frustrate them and lead them to disregard
the alerts. On the other hand, since the mindless approach does
not consume conscious awareness, unlike the alerting approach, it
might mitigate the negative effects caused by false positives.

We therefore suppose that the mindless approach would be suit-
able as an intervention in the context of video-based learning. In
particular, we believe that this is a plausible solution to the current
situation where effective interventions for video-based learning
have not been well investigated, as discussed in Section 2.1.
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3.2 Designing Mindless Attractor
To design the mindless approach leveraging human biases or un-
conscious behaviors, we exploited the nature of human speech
communication. Our design is based on the following requirements
we considered in view of using the mindless approach in video-
based learning situations.

Avoid interruption due to interventions. Considering that
video-based learning is sometimes delivered in the form of
live streams or in a synchronous manner [5], interrupting
users due to interventions should be avoided, as it can cause
them to miss information and counteract our aim of helping
them pay attention. This requirement is one reason to elim-
inate the use of alerting approaches, as we discussed their
interruptive aspect in Section 3.1.

Use a modality that users will not neglect. To intervenewith
users who are not paying attention to the video, it is impor-
tant to use a modality that is always reachable for users.
In this regard, though it is possible to leverage human per-
ceptual bias to design the mindless approach by showing
something on a display, this would not be suitable because
the user can take their eyes off the display, especially when
performing other tasks using a smartphone [34]. On the
other hand, it seems more unlikely that the user would not
hear the audio due to muting it while in video-based learning
situations.

Function without external devices. Though the use of ex-
ternal devices would extend the range of possible interven-
tions, such as using a tactile stimulus [31], it raises an addi-
tional cost to utilize the interventions. Therefore, it is desir-
able to design an intervention that could be integrated into
video-based learning situations without requiring external
devices.

As we reviewed in Section 2.3, it has been suggested that humans
unconsciously respond to paralinguistic cues in speech, such as
a change in pitch, volume, and speed. In our case, we considered
perturbing the pitch or volume of the voice in the video to help
users refocus their attention. We did not use speed because it would
be difficult to maintain time-series consistency when video-based
learning is conducted in a synchronous manner (e.g., live lectures
[5]).

In addition, the perturbation is enabled and disabled repeatedly
when the user is seemingly not paying attention to the video, as
Adams et al. [1] emphasized the importance of cues to trigger differ-
ent perceptions and sensations in designing mindless approaches.
Otherwise, if we activated the perturbation once when the user
became distracted and kept it thereafter, the user would have less
opportunity to refocus their attention as they became acclimated
to the changed pitch or volume.

3.3 Implementation
We used Python and PyAudio1 to perturb the audio signal in real
time. The audio signal was captured in 16 kHz and the perturba-
tion process was activated each 1/16 sec to ensure that the per-
turbed signal was delivered without significant delay. The pitch

1https://people.csail.mit.edu/hubert/pyaudio/docs/

shift was performed using a library named rubberband2 through
time-shifting and resampling the signal via Fourier transform. The
volume change was performed by directly multiplying the wave-
form double or halve. Our source code is publicized at a GitHub
repository3.

In addition, as we mentioned in Section 1 and Section 3.1, our
mindless intervention approach is expected to incorporate a sensing
module that monitors users’ behavior and detects when they are
distracted. The detailed implementation of the sensing module is
later explained in Section 6.3.

4 HYPOTHESES
Up to this point, we have introduced Mindless Attractor, which is
designed as an intervention for users during video-based learning
that incorporates a sensing module based on machine learning
techniques. It computationally perturbs the pitch and volume of
the voice in the video in real time to refocus users’ attention when
they seem to be distracted from the video. Our design rationale for
the proposed approach, which we discussed in Section 3.2, imposes
the following hypotheses, which need to be verified to ensure the
validity and effectiveness of the proposed approach.

First, as we discussed in Section 3.1, our proposal is based on
the concept of Mindless Computing [1] so as to ensure that the
intervention works without relying on user motivation and with-
out interrupting users. To satisfy these points, we should examine
whether Mindless Attractor can influence users’ behavior in a mind-
less manner, i.e., without consuming their conscious awareness.

H1: Mindless Attractor is an effective means to re-
focus the attention of users in video-based learning
situations without consuming their conscious aware-
ness.

If H1 holds, we have two choices for inducing behavioral change
in users (i.e., drawing their attention back to the video): alerting
users in an explicit manner or intervening in a mindless manner.
Here, as we discussed in Section 3.1, we expect that the proposed
approach will be favored over alerting approaches when combined
with a machine learning-based sensing module that detects when
users are losing attention. More specifically, the fact that such a
sensing module may produce false positives implies the risk of
mistakenly intervening in users, which can be annoying when we
alert them explicitly. Thus, we posit our second hypothesis:

H2: Mindless Attractor is not only an effective means
to refocus users’ attention but is also preferred by
users when combined with a machine learning-based
sensing module, while the alerting approach is not
accepted.

If these hypotheses are supported, we can pave the way for
intervening with users in real time to support their participation
during video-based learning. With this motivation, we evaluated
these hypotheses by conducting a series of experiments.

2https://github.com/breakfastquay/rubberband
3https://github.com/hiromu/MindlessAttractor
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5 EXPERIMENT I: EVALUATION OF H1
5.1 Design
To evaluate H1, we conducted an experiment that replicated video-
based learning situations. We used a within-participant design
comparing a treatment condition using Mindless Attractor with a
control condition that did not intervene in participants. Then, H1
is supported if the following two points are confirmed: Mindless
Attractor helps participants refocus their attention, and Mindless
Attractor does not consume participants’ conscious awareness.

5.2 Measure
We prepared two measures corresponding to the above two points
to be confirmed: recovery time and cognitive workload.

5.2.1 Recovery Time. This metric indicates the time that it took for
participants to return their attention to the video after losing focus.
If Mindless Attractor helps participants refocus their attention, the
time that they are distracted should be shortened in comparison to
the case in which no intervention was taken.

To compute this metric, we collected human annotations for each
participant denoting whether the participant was paying attention
or not. As we explain in the detailed procedure description in Sec-
tion 5.5, an experimenter observing the state of the participants
annotated in real time so that the recovery time could be calculated
later.

5.2.2 CognitiveWorkload. Thismetric was used to evaluatewhether
Mindless Attractor consumed the participants’ conscious awareness
or not. Measuring cognitive workload is common in the previous
studies proposing alerting approaches [31, 36]. Whereas they aimed
to show that their proposed approaches exhibited lower workload
compared to other possible approaches, we compared the metric
between the control and treatment conditions. If the cognitive work-
load in the treatment condition is not significantly different from
that in the control condition, it suggests that Mindless Attractor
does not consume participants’ conscious awareness. In our study,
we used the NASA-TLX questionnaire [8, 23] to measure cognitive
workload, in the same manner as the previous studies [31, 36].

We note that it would be possible to evaluate whether Mindless
Attractor consumes the participants’ conscious awareness by asking
them whether they noticed the perturbation. However, to do so,
we would need to conceal from the participants that they would
be subject to an intervention, which would create an unrealistic
situation if we consider the practical applications of the proposed
approach. More specifically, it is unlikely that users in video-based
learning situations would be subject to interventions without opt-in
consent; that is, they would use Mindless Attractor of their own
accord to focus on videos or at least would be notified about the
possibility of the intervention. In addition, as we mentioned in
Section 2.2, Adams et al. [1] explained that the mindless approaches
work regardless of whether a user knows their mechanisms or not,
as they do not depend on the user’s conscious awareness. Thus,
we used this measure based on NASA-TLX and also notified the
participants beforehand that they would be subject to interventions.

5.3 Material
To replicate a video-based learning situation, we prepared a video
recording of a 30-minute lecture on urban sociology. As this ex-
periment was conducted remotely, the video was presented to the
participants using the screen-sharing function of Zoom4.

By following the implementation we described in Section 3.3, we
also prepared a client software that modifies Zoom’s audio output to
perform our intervention. This software captures and perturbs the
audio output in real time when it receives an activation command
from a control server via WebSocket. Here, we conducted a pilot
study in the same manner as Adams et al. [1] to find the best param-
eters for intervening without causing distractions. Consequently,
we implemented four perturbation patterns: halving or doubling the
volume and lowering or raising the pitch by one tone. The software
then activates one of the four patterns randomly so as to enable
the comparison of their effectiveness for helping the participants
refocus their attention. Since Zoom automatically removes noises
and extracts voices, we confirmed that our naïve implementation of
pitch shifting based on fast Fourier transform would be sufficient
for the purposes of this experiment.

We further prepared an experimenter console in the control
server to record annotations concerning whether the participant
was paying attention or not. The console was implemented to enable
sending the activation and deactivation command to the client
software when the participant started to divert their attention from
the video and refocused their attention, respectively.

5.4 Participants
This experiment involved 10 participants, three of whom were
female. They were recruited via online communication in a local
community where over 100 university students gather. As described
later in Section 5.5, our experimental procedure required partici-
pants to be observed by a remote experimenter so that their state of
attention could be annotated. Therefore, we asked them to prepare
a PC with a webcam in a quiet room as well as to enable their faces
to be captured.

5.5 Procedure
Each participant underwent one session of watching the 30-minute
video using a computer connected over Zoom, as we mentioned in
Section 5.3. To replicate the usual situation of video-based learning,
in which learners have some reasons to watch the video, we told
participants in advance that they would be asked to write a few
sentences summarizing the video. At the same time, we asked them
to bring their smartphones and told them that wewould not prohibit
the use of smartphones so that they could be distracted as usual
[34].

As depicted in Figure 1, each session was divided into two parts
of 15 minutes each: one with no intervention and another involving
interventions. To normalize the order effect, we balanced the order
of the two parts: five participants first experienced the part with
no intervention, and the others first experienced the part involving
interventions. After each part, the participant was asked to write a

4https://zoom.us/

https://zoom.us/
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summary and fill out the questionnaire measuring cognitive work-
load. Note that these two parts do not correspond to the control
and treatment conditions, as explained in the following paragraphs.

In the part involving interventions, an experimenter observed
the state of a participant, including their use of smartphones, and
annotated whether they were paying attention to the video or not.
When the experimenter pressed a button on the experimenter con-
sole to record the timestamp at which the participant diverted their
attention from the video, the console assigned either the control or
treatment condition with a 50% probability of each. Note that the
selected condition was concealed from the experimenter in order
to avoid the experimenter bias in the annotations. If the treatment
condition was assigned, the console sent the activation command
to the client, and the client then repeatedly enabled and disabled
one of the four perturbation patterns every 3 seconds, as explained
in Section 3.2. This intervention continued until the client received
the deactivation command indicating that the experimenter pressed
another button to record the participant’s recovery from the dis-
traction. On the other hand, if the control condition was assigned,
no command was sent to the client. Consequently, based on the
assigned conditions and the recorded timestamps, the recovery time
could be calculated and compared.

The other part (with no intervention) was prepared to evaluate
the cognitive workload. We compared its cognitive workload score
with that of the part involving interventions, which were activated
on a random basis. If the intervention did not consume the partici-
pant’s conscious awareness, the scores of the two parts would not
be significantly different.

In addition, at the end of the session, we asked the participants
for their comments about their feelings or anything they noticed.
In total, the entire session took about an hour to complete.

5.6 Results
5.6.1 Recovery Time. As shown in Table 1, the proposed inter-
vention significantly shortened the recovery time according to the
unpaired 𝑡-test (Cohen’s 𝑑 = 1.0044, 𝑝 < 0.0001). The distribution
of the recovery time is shown in Figure 2, which also confirms
this reduction. This result supports that Mindless Attractor helped
participants refocus their attention.

We also investigated which of the four perturbation patterns
(i.e., halving or doubling the volume and lowering or raising the
pitch by one tone) effectively helped participants refocus their
attention. We examined the last perturbation pattern before each
time the participant returned their attention and counted their
occurrence, as shown in Table 2. This examination is based on
our assumption that the intervention just before the participant’s
attention returned is the cause of the change in the participant’s
state. According to the 𝜒2-test comparing with the total occurrence,
the results were not significantly different in that each pattern
equally helped participants recover their attention (Cramer’s 𝑉 =

0.1220, 𝑝 = 0.2794). In other words, we can conclude that there was
no significant difference in the effectiveness of the four perturbation
patterns.

5.6.2 Cognitive Workload. We also could not find a significant dif-
ference in participants’ cognitive load scores according to the paired
𝑡-test (Cohen’s 𝑑 = 0.2110, 𝑝 = 0.5212), as presented in Table 1.

That is, it is suggested that Mindless Attractor did not consume
participants’ conscious awareness or at least did not negatively
affect participants’ cognitive load by consuming their conscious
awareness. Thus, in combination with the effect on the recovery
time, H1 was supported.

5.6.3 Comments. We also examined the comments that the partic-
ipants wrote at the end of the experiment. At first, we realized that
three participants mentioned that they did not notice any interven-
tion, although they were informed of the intervention beforehand.
Interestingly, the recovery time for these three participants also
showed a significant difference (Cohen’s 𝑑 = 0.8105, 𝑝 = 0.0122)
between the treatment (15.88 𝑠 on average) and control (28.34 𝑠
on average) conditions. Thus, it is suggested that the mindless
approach worked even when it was not noticed by participants,
further supporting that Mindless Attractor did not consume the
participants’ conscious awareness. This point not only corroborates
H1 but also shows consistency with the discussion by Adams et al.
[1].

It was also interesting that, although five participants mentioned
that they noticed the changes in volume, no participant recognized
the changes in pitch. That is, although no significant difference was
found between the effectiveness of the four perturbation patterns
in Table 2, their noticeability varied, suggesting further room for
investigation.

Nevertheless, no participants regarded the mindless intervention
as disruptive or annoying; rather, two participants made positive
comments about it:

I found it useful because it naturally brought my at-
tention back to the video when I thought something
might have changed in the speech. (P1)
It was nice as it made me feel like...the computer was
recommending me to concentrate, rather than warn-
ing me. (P4)

In particular, the latter comment suggested that the mindless ap-
proach can mitigate the negative effect that might be caused by
false-positive detection when combined with a machine learning-
based sensing module. These results motivated us to conduct a
second experiment to evaluate this possibility, as discussed in Sec-
tion 4 when posing H2.

6 EXPERIMENT II: EVALUATION OF H2
6.1 Design
To evaluate H2, we conducted an experiment that replicated a video-
based learning situation in the same manner as Section 5. However,
in this case, we combined a machine learning-based sensing module
rather than manually activating interventions and compared the
effects of the mindless approach and the alerting approach. Here,
we used a within-participant design over three conditions: mind-
less, alerting, and control (no intervention). We added the control
condition to confirm that the proposed approach was at least effec-
tive in contributing to refocusing users’ attention as an automated
system controlled by a machine learning-based sensing module.
H2 is thus supported if the following two points are confirmed:
Mindless Attractor helps participants refocus their attention, and
participants favor Mindless Attractor over the alerting approach.



Mindless Attractor CHI ’21, May 8–13, 2021, Yokohama, Japan

Install the client
with opt-in consent

Write a summary

Fill out the questionnaire

Write a summary

Fill out the questionnaire

no intervention involving interventions

Comparison of
cognitive workload

Human annotationsHuman annotations0 min 15 min 30 min

Control Treatment
Comparison

of recovery time

Participant

Experimenter

Install the client
with opt-in consent

Write a summary

Fill out the questionnaire

Write a summary

Fill out the questionnaire

involving interventions no intervention

Comparison of
cognitive workload

Human annotationsHuman annotations0 min 15 min 30 min

Control Treatment
Comparison

of recovery time

Participant

Experimenter

(A) No intervention → Involving interventions

(B) Involving interventions → No intervention 

Figure 1: Example illustration of the procedure for our first experiment. (A) Half of participants first experienced the part
with no intervention and then experienced the part involving interventions, and (B) the others followed the reversed order.

Table 1: Comparison of the recovery time and cognitive workload score between the control and treatment conditions. The
treatment condition involved the mindless intervention.

Measure Treatment Control 𝑝-value

Recovery time 17.71 𝑠 (±10.52 𝑠) 32.25 𝑠 (±16.92 𝑠) < 0.0001
Cognitive workload 26.00 (±10.32) 27.00 (±9.13) 0.5212

Table 2: Occurrence of the four perturbation patterns that were executed just before participants returned their attention. The
comparison with the total occurrence suggests that there was no significant difference in effectiveness (𝑝 = 0.2794).

Perturbation Halve the volume Double the volume Lower the pitch Raise the pitch

Occurrence just before 19 7 14 16participants returned their attention
Total occurrence 50 47 50 55
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Treatment Control

Figure 2: Distribution of the recovery time across each participant and the experimental conditions.

6.2 Measure
Similar to the first experiment, we measured time with regards to
whether participants were paying attention. However, we intro-
duced a different approach for evaluating the time factor, i.e., total
distracted time instead of the recovery time. In addition to this, we
introduced a measure for behavioral intention.

6.2.1 Total Distracted Time. Although we have confirmed that
Mindless Attractor can help participants return their attention, it
is desirable to investigate whether the total time that they are dis-
tracted during video-based learning is decreased. In other words, it
may be possible that, though the mindless approach shortened the
recovery time, the participants were distracted more frequently, es-
pecially when the mindless approach was combined with a machine
learning-based sensing module having a risk of false positives.

To compute this metric, we collected human annotations for
each participant, as we did in Section 5, and aggregated the dura-
tion when the participants were not paying attention. If the total
distracted time in the mindless condition is significantly shorter
than in the control condition, it is suggested that Mindless Attractor
can make users more likely to pay attention, even in combination
with a machine learning-based sensing module.

It should be noted that, due to the false negatives of such a sens-
ing module, there would be a case when the intervention is not
triggered even when the participant is actually losing their atten-
tion and a case when the intervention is deactivated before the
participant refocus. Therefore, calculating the recovery time as in
Section 5.6 is not appropriate in this second experiment, further ra-
tionalizing the introduction of the total distracted time as a different
metric.

6.2.2 Behavioral Intention. This metric was prepared to evaluate
whether the mindless approach was favored over the alerting ap-
proach. The concept of behavioral intention is guided by the Tech-
nology Acceptance Model [12], which explains users’ attitudes
towards technologies, and is frequently used to evaluate how likely
individuals are to use the technologies. We used the questionnaire

to measure behavioral intention in the same manner as the previous
studies [46]. If this score in the mindless condition is significantly
better than that in the alerting condition, we can confirm that Mind-
less Attractor can be favored over the alerting approach, especially
when it works as an automated system with a sensing module.

6.3 Material
Similar to our first experiment, we prepared a video recording
of a 30-minutes lecture on social sciences. The experiment was
conducted remotely and the video was presented using Zoom’s
screen-sharing function, as in the first experiment. However, in
this second experiment, we developed a system that automatically
detected the status of participants’ attention. To implement this
sensing module, we followed previous studies that estimated partic-
ipants’ attentiveness based on their visual cues, which we reviewed
in Section 2.1. Specifically, we analyzed the video stream of face
images of each participant by leveraging machine learning tech-
niques that can detect their head pose in real time. If the module
detected that the participant was looking off the screen, the system
judged that the participant was failing to pay attention to the video
lecture, and activated an intervention.

Figure 3 illustrates how the system processed the video streams
of participants and intervened in them. Videos were processed in
a frame-by-frame manner. First, a human face was detected and
located in each frame using a deep learning model, RetinaFace [14].
We used this model because it achieves state-of-the-art performance
and its pretrained model is publicly released. Face alignment was
then performed to obtain facial keypoints using a deep learning
model proposed by Fang et al. [17] that is also known to estimate
keypoints with high accuracy. Finally, based on the estimated facial
keypoints, the head pose was calculated by solving a perspective-n-
point problem. These calculations were performed using a dedicated
computation server with an NVIDIA V100 Tensor Core GPU.

Next, the estimated head pose was passed to the experimenter’s
PC, a conventional laptop with a 2.2 GHz Intel Core i7 processor.
This PC checked whether the passed head direction was off-screen
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Figure 3: Architecture of the entire system we implemented
for the second experiment.

or not. The experimenter had conducted a calibration process be-
forehand to calculate the threshold for this judgment, in which
participants were asked to track a red circle that appeared and
moved along the edge of the screen. Participants were told to track
the circle by moving their head, i.e., not following it only by mov-
ing their gaze. We then calculated the maximum head rotations for
each direction (top–down and left–right) and regarded them as the
range where the head is toward the screen. In other words, when
the estimated head pose was out of this range, then the system
judged that the participant was looking off the screen, and thus,
losing their attention.

While the participants were watching the video, changes in
their state–i.e., whether they were looking at the screen or not–
were shared with another control server maintaining a WebSocket
connection with the client software. The control server then corre-
spondingly sent activation or deactivation commands in the same
manner as the first experiment. All of the above processes were
performed in real time with a frame rate of 15 FPS.

In addition to the sensing module, we implemented an interven-
tion to explicitly alert users in the client software, to be compared
with our proposed approach. In this case, the client software played
a short beep for 0.1 seconds, which followed the previous study’s
use of a beep alert [26], rather than perturbing the audio output.
Once the alert was activated, it replayed the same beep every 3
seconds until it received the deactivation command, in the same
manner as the mindless condition.

6.4 Participants
This experiment involved 20 participants, five of whom were fe-
male. They were recruited in the same manner as we did in the
first experiment. Eight of the participants participated in our first
experiment, which had been held at least two weeks before this
experiment. The participants were asked to prepare a PC in a quiet
room and to enable their faces to be captured with a webcam, as in
the first experiment.

6.5 Procedure
Similar to the first experiment, each participant experienced a ses-
sion of watching the 30-minute video using a computer connected
over Zoom. As before, we told participants in advance that they
would be asked to write a few sentences summarizing the video
and also allowed them to bring and use their smartphones in the
session.

As illustrated in Figure 4, each session consisted of three parts
lasting 10 minutes each: one with no intervention, another with

Table 3: Confusion matrix between the human annotations
and the detection results of the machine learning-based
module in regard to participants’ attentive state.

Detection result
Attentive Distracted

Human
annotations

Attentive 435.4 min (68.5 %) 78.0 min (12.3 %)
Distracted 51.4 min (8.1 %) 70.7 min (11.1 %)

the mindless approach, and a third with the alerting approach. The
order of these three parts was automatically randomized among
participants, as we will describe later in this section. After each
session, participants were asked to write the summary. They were
also asked to fill out the questionnaire measuring behavioral inten-
tion when they finished a part with either the mindless or alerting
approach. We compared the scores between the two conditions to
examine which approach participants favored.

Before starting the first session, the experimenter performed
a calibration process to determine the threshold for whether the
participant’s head pose was out of the screen, as described in Sec-
tion 6.3. The experimenter explained that the participants should
not move their PC until the entire process was complete and ad-
vised them to find a comfortable position before the calibration
process started.

In each of the three parts, the experimenter manually annotated
whether the participant was paying attention to the video lecture,
similar to the first experiment. To avoid bias, the experimenter
was blind to which of the three conditions had been applied to the
participant. Specifically, the control server (see Figure 3) decided
the order of conditions in each session, and the experimenter did
not have access to this information until the session ended. The
obtained annotations were used to calculate the total distracted
time for each part.

In addition, our developed machine learning-based sensing mod-
ule triggered interventions to the participants in either the alerting
or mindless condition, as described in Section 6.3. In the alerting
condition, participants were exposed to the beep sound when the
system judged that they were losing attention, whereas they were
exposed to perturbations in the speech in the mindless condition.
In the control condition (i.e., that with no intervention), the client
system did not intervene. In each part, the sequence of the system’s
judgment was recorded along with timestamps, which we later
used to assess the accuracy of the sensing module by comparing it
with the human annotations.

Finally, at the end of the session, we asked the participants for
their comments about their feelings or anything they noticed. In
total, the entire session took about an hour to complete.

6.6 Results
6.6.1 Sensing Accuracy. We first examined the accuracy of our
machine learning-based sensing module in detecting participants’
attentive state. We compared the human annotations and the detec-
tion results of the module and obtained Table 3. Though our aim
is not to develop a detection system, the accuracy across all the
participants was 79.6 %, which was relatively close to the previous
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Figure 4: Example illustration of the procedure for our second experiment. Each participant was randomly assigned to one of
six possible orders of the three conditions.

study [42] that achieved the accuracy of 82–85 % using only head
pose. We note that the accuracy varied among participants (64.9–
93.0 %), which implies that some environmental factors (e.g., the
distance to camera or lighting conditions) might largely affect the
detection results. At the same time, the sensing module exhibited
a lot of false-positive detection, as its precision was 47.6 %, which
suited our aim to investigate the effect of Mindless Attracter while
having a risk of false positives.

6.6.2 Total Distracted Time. Next, based on the human annotations,
we calculated the total distracted time for each participant, as pre-
sented in Figure 5.We found a significant difference among the three
conditions according to ANOVA (𝐹 (2, 57) = 8.5773, 𝜂2 = 0.2313,
𝑝 = 0.0005), and thus conducted a post-hoc test. As a result, the con-
trol condition showed significant differences against the mindless
and alerting conditions (Cohen’s 𝑑 = 1.1795, 𝑝 = 0.0013 and Co-
hen’s 𝑑 = 1.0828, 𝑝 = 0.0032, respectively). On the other hand, we
found no significant difference between the mindless and alerting
conditions.

From this result, it was confirmed that Mindless Attractor is an
effective means to refocus users’ attention even when combined
with a machine learning-based sensing module, as the mindless
condition significantly reduced the total distracted time than the
control condition. In addition, it is notable that Mindless Attractor
would work effectively as well as the conventional alerting ap-
proaches since the mindless and alerting conditions showed similar
distracted times.

We also examined how many times the participants got dis-
tracted because it was possible that our interventions increased the
frequency even though the total distracted time was reduced. As
shown in Figure 6, we did not find significant differences among
the three conditions (𝐹 (2, 57) = 0.1796, 𝜂2 = 0.0062, 𝑝 = 0.8360). It
can be explained as follows: the participants were almost equally
likely to lose focus in all the three conditions; but, if there was an in-
tervention, they often refocused their attention to the video earlier,

as confirmed in the first experiment; as a result, their distraction
time in the mindless and alerting conditions was significantly re-
duced than the control conditions. From these results, we conclude
that H2 was supported in terms of the effectiveness of Mindless
Attractor.

6.6.3 Behavioral Intention. Lastly, we compared participants’ scores
of the behavioral intention between the mindless and alerting con-
ditions. As presented in Figure 7, we found a significant difference
(Cohen’s 𝑑 = 0.7025, 𝑝 = 0.0054) according to the paired 𝑡-test.
That is, compared to the alerting approach, the participants showed
their stronger intentions to use the implemented system when it
is combined with the mindless approach. This result supports that
Mindless Attractor is much preferred by users than the alerting
approach, as we hypothesized as H2.

6.6.4 Comments. The above results coincided with H2; that is,
Mindless Attractor helps participants refocus their attention and it
is favored over a conventional alerting approach. In addition, the
comments obtained at the end of the experiment corroborated H2,
especially in regard to the unacceptability of the alerting approach.

I felt like the beep sound made me lose focus. It was
frustrating, especially when I was concentrating. (P9)
The beep felt like noise because it overlapped the
speech though I wanted to listen to what was be-
ing said. As a result, my concentration was more dis-
rupted than the case that I had not used the system.
(P12)
I thought the one with the beep sound might be a
good signal until halfway through, but then it came
to ring repeatedly even though I was concentrating.
As a result, I stopped caring about the sound. (P2)

These comments confirmed our anticipation; that is, explicitly alert-
ing users based on false-positive detection makes them distracted
and frustrated, which can lead them to ignore the intervention. In
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addition, one participant suggested that such negative effects can
be caused even when the intervention was activated by accurate
detection:

I was disgusted by the alarm, which rang when I was
using my smartphone for googling a word I never
heard. (P8)

In contrast, the mindless condition was totally favored, as fol-
lows:

In the part [of the mindless condition], I felt like I was
able to focus on the lecture relatively well. (P12)

I did not notice much of a change in the audio, but
when I compare the three parts, I seemed to be able to
maintain my concentration the most. I think having
such a system that brings back my attention without
making a big deal will help me stay focused in usual
situations. (P3)

When the pitch of the speech became higher, I paid
attention to the video as I felt strange a little. It did
not provide a sense of being angry, compared to the
beep alarm. (P11)

These comments corresponded to the comparison of the scores of
behavioral intention (Figure 7).

Furthermore, 17 of 20 participants agreed they often have trouble
maintaining their attention and computationally solving it would
be beneficial, like:

I find it difficult to maintain my attention in such
online situations because of the lack of eyes around.
(P1)

In addition, they suggested that the proposed approach can be used
outside video-based learning situations.

I thought it would be nice to be able to introduce a
similar system in offline situations. I will appreciate it
if some device such as a smartwatch helps me refocus
when I am losing my attention from an important
conversation. (P4)

The obtained comments not only supported the effectiveness of
Mindless Attractor through supporting H2 but also highlighted the
further potential of the proposed approach.

7 DISCUSSION
So far, by verifying H1 and H2, we have demonstrated that Mindless
Attractor works effectively as a novel intervention approach to
support users’ participation during video-based learning. In this
section, we contemplate the findings of our study, envision future
application scenarios, and discuss limitations and directions for
future work to further pave the way for supporting users in video-
based communication.
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7.1 Necessity of Mindless Intervention in
Machine Learning-Based Systems

The results of our second experiment supported H2: Participants
favored the proposed mindless approach, while the alerting ap-
proach was not accepted. Specifically, the obtained comments sug-
gested that participants were annoyed by the alerts when they
were triggered by false positives of the sensing module. In other
words, mistakenly intervening in an explicit manner while users
are concentrated on the main task can unnecessarily consume their
conscious awareness and eventually disrupt their experience.

Indeed, such failures in designing automated systems based on
machine learning-based sensing modules have been pointed out
in a recent guideline for human–AI interaction [2]. That guideline
emphasized the importance of considering that such AI-infused
systems may demonstrate unpredictable behaviors due to false pos-
itives and false negatives. Consequently, it was suggested that an
effective approach in designing AI-infused systems is to enable
users to dismiss the undesired functions instantly. In light of this,
our proposed mindless approach can be a promising direction that
follows this guideline, as it does not consume users’ conscious
awareness, letting them not mind the mistakenly triggered inter-
ventions without much cognitive workload. Therefore, we believe
that Mindless Attractor can support users as a novel intervention
method integrated with machine learning-based systems in various
cases, not limited to the presented case (i.e., video-based learning).

7.2 Application Scenarios
Asmentioned in Section 1, the importance of helping participants be
attentive during video-based communication has been emphasized
in various contexts. In this regard, we believe that Mindless Attrac-
tor can be used effectively not only in video-based learning but also
in other situations using video-based communication. For example,
it can be employed to help participants in video-based meetings be
more attentive in the same manner as shown in this study. Here, we
note that a few studies have aimed to provide real-time feedback
to participants in meetings [37, 38]. For example, CoCo is a system
designed to achieve balanced participation through feedback, such
as showing a pie chart representing the participation ratio that can
be estimated from speaking length and frequency [37]. Similar to
the discussion we had with regard to video-based learning, these
techniques of providing explicit feedback require participants to
be motivated to change their behavior, i.e., to be more attentive
to the meetings based on the feedback. Therefore, we can expect
that Mindless Attractor will be a promising alternative approach
in that it does not consume participants’ conscious awareness dur-
ing meetings, even when combined with machine learning-based
sensing systems.

Furthermore, we envision a future where Mindless Attractor can
be utilized in everyday interpersonal interactions. If we can assume
that wearing earphones in our daily life become more popular, it is
possible to perturb the sound they hear to utilize Mindless Attrac-
tor. For example, once the system detects that the user is failing
to pay attention during a conversation based on their behavioral
or physiological data, the envisioned system can intervene in a
mindless manner by modifying the voice they hear. Note that such

demand for offline use was indeed observed in one participant’s
comment (P4) in our second experiment.

It is noteworthy that we verified the effectiveness of Mindless
Attractor in the experiments in which users used it with prior
consent. This lets us imagine further practical applications utilizing
Mindless Attractor as an opt-in function. More specifically, it would
allow users to selectively turn the system on and off on their own,
according to their situations and motivations. For example, if a user
attends an important lecture or meeting and thinks that they need
the assistance, they can actively allow themselves to be exposed to
the mindless intervention by turning on the system. In other words,
our results, which showed that the mindless approach worked with
opt-in consent, will pave the way for the user-centered exploitation
of computational interventions with which users can augment their
levels of attention.

7.3 Limitations and Future Work
Though our experiments have demonstrated that Mindless Attrac-
tor is a promising approach, there are some limitations. Initially, fur-
ther investigations involving a greater number of participants and
diverse lecture content are desirable to generalize our results. For
example, if a lecture is so attractive that learners are not distracted
from the video, the proposed approach would not be necessary,
while at worst it would not be harmful, as its impact on cognitive
load was not observed in Section 5.6.

Secondly, our approach and evaluations are based on the discus-
sion of Mindless Computing proposed by Adams et al. [1], consid-
ering users whose motivation for obeying the intervention is not
always assumed. In fact, we have given some consideration to the
experimental designs so that the participants would not become
much motivated to the video, like allowing the use of smartphones.
Thus, we skipped the measurement of the participants’ motivation
in our studies. However, this means that their results would not
necessarily guarantee the universal effectiveness of the proposed
method for users with any levels of motivation. Thus, evaluating
participants’ motivation and exploring its correlation with the effi-
cacy of Mindless Attractor can be a promising future work.

In addition, the accuracy of the machine learning-based sens-
ing module in the second experiment can be improved using the
latest techniques [24, 42, 45, 54]. In this study, we used a naïve
approach based on head pose to investigate the effect of the pro-
posed approach with false-positive detection. Although our sensing
approach achieved a certain level of accuracy, as discussed in Sec-
tion 6.6, there is room to further sophisticate the algorithm. It
remains to be explored how users would feel if the alerting ap-
proach is combined with a much more accurate sensing module.
Nevertheless, we believe that our mindless approach can be an
effective intervention because false positives will still remain.

In relation to this, it is noteworthy that recent works have pro-
posed methods for drowsiness detection from human visual cues
[19]. Thus, it can be explored in future work whether Mindless
Attractor can help participants who get sleepy during video-based
learning, by integrating such a detection technique in the sens-
ing module. Examining the boundary of the effectiveness of the
proposed approach in such a situation would inform us of further
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possible approaches, such as a hybrid of the mindless and alerting
interventions.

We also acknowledge that refining the design of alerts can miti-
gate the negative impact suggested in the second experiment. While
we used a simple beep as an alert, alternative methods to inform
users in less annoying manners are possible. In particular, Weiser
and Brown conceptualized “calm technology” as a more accept-
able communication channel from computers [48, 49]. For example,
alerting users with less explicit sounds (e.g., birds chirping) could
be preferred to a simple beep sound. In addition, if we ignore the
requirement of using the auditory modality, showing a status lamp
on display is an alternative to inform users that they are losing
attention. However, as Adams et al. pointed out, these techniques re-
quire users’ conscious awareness (e.g., interpreting the status based
on the lamp) to induce behavioral change [1], while mindless com-
puting does not. Therefore, Mindless Attractor can be differentiated
from alerting approaches in that it can work without consuming
users’ conscious awareness, as suggested in the first experiment
(see Section 5.6). That said, it is desirable to explore sophisticated
alerting approaches to draw further implications in comparison to
our mindless approach.

At the same time, the design of the mindless intervention has
also room for exploration. Currently, as explained in Section 3.2,
we decided to perturb the pitch or volume of the voice based on
the nature of human speech communication. Though we did not
statistically examine the results due to the small number of per-
turbations activated for each participant, there were individual
differences in terms of their effectiveness, which would imply the
possibility of personalizing the intervention patterns. Moreover,
human brains are known to show a special response to a self-voice
[10] or a familiar voice [6]. Thus, a possible intervention might
involve computationally modifying a voice so as to be similar to a
self-voice or familiar voice when learners are not paying attention.
This can be achieved through recent techniques for high-fidelity
real-time voice conversion [3, 43].

Looking toward production deployment, investigating whether
the proposed approach that helps learners pay attention contributes
to their learning performance could be a future study. Considering
that previous studies adopting explicit feedback to help learners
pay attention have shown a positive impact on performance [4,
51], our mindless approach can be expected to have a positive
effect. This is because the mindless approach exhibited an effect
on distracted time comparable to that of the alerting approach in
Section 6.6, while showing no significant impact on the cognitive
load in Section 5.6. Examining the long-term effect of the proposed
approach is also suggested for future work. Though our design is
based on the concept of Mindless Computing, which Adams et al.
[1] have described as having long-term effectiveness, it is difficult
to deny, without further investigation, the possibility that users
will become acclimated to the perturbations. However, even in this
case, the combination with voice conversion we mentioned above
could be a remedy, as it enables as many patterns of interventions
as the number of conversion targets.

8 CONCLUSION
We presented a novel intervention approach, Mindless Attractor,
which helps users refocus their attention in a mindless manner.
The approach leverages the nature of human speech communica-
tion and perturbs the voice that users hear when they are losing
their attention. Our first experiment confirmed the effectiveness
of Mindless Attractor in a video-based learning context by show-
ing that it helped users refocus their attention without consuming
their conscious awareness. Moreover, through a comparison with
a conventional alerting approach, our second experiment further
supported the efficacy of our proposed mindless approach when
integrated as an automated system with a machine learning-based
sensing module. Based on the results of the experiments, we dis-
cussed implications for utilizing mindless interventions, especially
in tandem with machine learning-based sensing modules, and en-
visioned future application scenarios. Our findings and discussion
pave the way for developing novel mindless interventions that can
be harnessed in human–AI symbiosis.
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