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Abstract— Exploration is a great challenge in reinforcement
learning (RL), limiting its applications in robotics. Building a
well-learned agent often requires many trials, due to the diffi-
culty of matching its actions with rewards in the distant future.
A remedy is to train an agent with real-time feedback from
human observers who immediately gives rewards. This study
tackles a series of challenges for introducing such a human-
in-the-loop RL scheme. We first reformulate human observers:
Binary, Delay, Stochasticity, Unsustainability, and Natural Re-
action. We also propose an RL method called DQN-TAMER,
which efficiently uses both human feedback and distant task
rewards. We find that the DQN-TAMER agent outperforms the
baselines in Maze simulated environment even with a limited
amount of human feedback. Furthermore, through a real-world
human-in-the-loop setting using a car robot with a camera,
we demonstrated that natural reactions like facial expressions
work well as an implicit human reward. The video attachment
is available: https://youtu.be/o25x51eHf7s.

I. INTRODUCTION

Reinforcement learning (RL) has potential applications for
autonomous robots. However, it often requires a lot of trials
until the agent reaches an optimal policy, preventing RL
from spreading to real applications. This is primarily because
RL agents obtain rewards only in the distant future, e.g., at
the end of the task. Thus, it is difficult to propagate the
reward back to actions that play a vital part in receiving
the reward. Giving additional training signals by humans is
a useful remedy. During training, human observers perceive
the agent’s actions and states and provide some feedback to
the agent in real time. Such immediate rewards can accelerate
learning and reduce the number of required trials. This
method is called human-in-the-loop RL and its effectiveness
has been reported [1]–[9]. However, experiments in prior
studies did not or only partially consider some key factors in
realistic human-robot interactions. They sometimes assumed
that human observers could (1) give precise numerical re-
wards, (2) do so without delay (3) at every time step, and
(4) that rewards would continue forever.

We first reformulate human observers with the more real-
istic characteristics. Next, we propose a simple but effective
RL algorithm, DQN-TAMER, that leverages two different
critic networks to combine task- and human-reward. Finally,
we demonstrate its performance through experiments in a
simulated and real-world environment using a car robot
recognizing human facial expressions as implicit rewards.
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Fig. 1: Human-in-the-loop RL and our model (DQN-TAMER). The
agent asynchronously interacts with a human observer in an
environment. DQN-TAMER decides actions based on two
critics: one (Q̂) estimating rewards from the environment
and the other (Ĥ) for feedback from the human.

TABLE I: Characteristics of human observers

Study Binary Delay Stoch-
astic

Unsust-
ainable

Natural
Reaction

Thomaz et al. 2005 [1], [2] X X
Joost Broekens 2007 [3] X X X (face)
Knox et al. 2007 [4] X X X
Tenorio-Gonzalez et al.
2010 [5]

X X X (voice)

Pilarski et al. 2011 [6] X X X
Griffith et al. 2013 [7] X X
MacGlashan et al. 2017 [8] X X X X
Warnell et al. 2018 [9] X X X
Ours X X X X X (face)

II. PROBLEM FORMULATION

We introduce five key characters to consider about human
feedback when we aim to launch human-in-the-loop RL
systems. Table I compares prior studies in these axes.

1) Binary: Requesting people give fine-grained or con-
tinuous scores is found difficult [10] and thus binary
feedback is preferred, simply indicating good or bad.

2) Delay: Human feedback is usually delayed by a signif-
icant amount of time [11] and the delay must not be
constant.

3) Stochasticity: It is reported that the feedback frequency
varies largely among human users [12], [13].

4) Unsustaibability: It is very difficult to presume that
humans watch an agent until it finishes learning through
many episodes. Ideally, even if a human gives feedback
within a limited span after learning begins, we wish it
could subsequently lead to a better learning process.

5) Natural Reaction: When intelligent agents become more
ubiquitous and we launch real human robot interaction
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Fig. 2: The result in simulated Maze.

systems, it is preferable that the system infers implicit
feedback from natural human reactions rather than what
humans provide actively.

III. METHOD

TAMER [4] is a current standard framework in human-in-
the-loop RL, where the agent predicts human feedback and
takes the action that is most likely to result in good feedback.
We introduce DQN-TAMER, which incorporates task-reward
into this framework by using two critic deep neural networks:
Q̂(s, a) for task-value function of the state-action pair (s, a)
and Ĥ(s, a) for human-value function. Thus using weight
variables αq and αh, the optimal policy can be written by

π(s)DQN−TAMER = arg max
a

αqQ̂(s, a) + αhĤ(s, a). (1)

IV. EXPERIMENT

We experimented with DQN-TAMER in a simulated and
real-world environment. We compared it against two baseline
algorithms including (1) DQN, which leverages reward from
task using a neural network, and (2) Deep TAMER [9], which
uses reward from the observer using a neural network.

A. Simulated Maze

Maze is a classical game where the agent must reach a
predefined goal. We compared the sample efficiency in each
algorithm through experiment, i.e., we examined how fast
learning converges. We fixed the field size of a maze to 8
× 8 and the initial distance to the goal at 5. Every step, the
agent can move 1 space toward north, east, south, and west.
If it reaches the goal, it receives +1.0 but otherwise -0.01 as
reward from the task. We simulated a human feedback as it
gives a binary label whether the agent reduces the Manhattan
distance to the goal, stochastically and with delay. If an agent
moves closer to the goal, the human provides +1 positive
feedback and -1 negative feedback otherwise.

Figure 2 shows the result of training when the human gave
feedback during the first 30 episodes with low frequency
(20%) along with stochastic delay. DQN-TAMER outper-
forms the baselines even after feedback stop. We observed
similar results when we varied human parameters.

B. Real-world Maze with Natural Reaction

In a real-world Maze environment, we built a car robot
with a camera and trained it with human implicit feedback,
Natural Reaction. Reward is not directly given and, instead,
inferred by recognizing a human facial expression. The

intriguing question we tackle here is whether an agent can
learn well from such suspicious reward including recognition
errors. The agent interprets the facial expression ‘happy’
as positive reward (+1) and other expressions (‘anger’,
‘contempt’, ‘disgust’, ‘fear’, and ‘sad’) as negative (-1).
We used MicroExpNet as a recognition model, which is a
convolutional neural network-based model [14].

For the details, please watch the video. The facial ex-
pression classifier misclassified the facial expressions (i.e.,
flipping sentiment) with around 15%. However, even with the
many errors, the DQN-TAMER agent successfully learned a
good policy with a limited number of episodes.

V. SUMMARY AND FUTURE WORK

We introduced five key problems of human feedback
in real applications. The result with a simulated human
indicates the effectiveness of combining rewards from a task
and a human with such intractable feedback. We also built
a car robot system that exploits implicit rewards by reading
human faces with a CNN based classifier. As future work,
we will tackle other high-dimensional tasks by incorporating
state-of-the-art RL algorithms.
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