
Figure 1: Image projection with
BulkScreen. Upper: The portrait of
Albert Einstein. Lower: The Great Wave
by Hokusai.
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ABSTRACT
Digital images appearing on displays in everyday activities (e.g., photos on a smartphone) are auto-
matically and instantly rendered without manual intervention such that we can seamlessly appreciate
them. In contrast, shape displays require manual designs of outputs upon actuation of input images
to render 3D shapes. In this work, we aim to achieve automatic and on-the-spot actuation of digital
images so that we can seamlessly see 3D physical images. To this end, we developed BulkScreen, an
image projection system that can automatically render 3D shapes of input images on a vertical pin-
array screen. Our approach is based on a deep-neural-network saliency estimation coupled with our
post-processing algorithm. We believe this spontaneous actuation mechanism facilitates applications
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with shape displays such as real-time picture browsing and display advertisement, building on the
benefit of representing physical shapes; tangibility.

CCS CONCEPTS
• Human-centered computing → Displays and imagers; • Hardware → Emerging interfaces; •
Computing methodologies→ Shape representations.
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INTRODUCTION
Shape display, dynamic actuation of digital contents with physical objects such as square pins [3, 11]
enhances presence of digital matters by providing their 3D physical existence, enabling tangible
interaction (e.g., touching the shapes of rendered images). However, while we can seamlessly see
images on our smartphones or laptops with autonomous and instant GUI rendering process, shape
displays require manual designs of output shapes consisting of a large number of 3D pixels before
showing images. Since this process is often time consuming, the displays lack the flexibility of
rendering varying input images on the spot. In addition, previous shape displays were table-top
surfaces, limiting its use cases to scenarios such as 3D map manipulation and CAD modelling. This
restriction hinders further applications of shape displays requiring vertical placement such as image
showcasing.

To address the above issues, we propose BulkScreen, a vertical screen that can automatically render
3D shapes with 16 × 16 pin array. A deep learning model first captures the saliency feature of an
input image. Subsequently, our post-processing algorithm convert the estimated saliency into the
depth information for each pin. Then, based on the depth data, 256 motorized pins are actuated
dynamically to depict the 3D shape, while the original image is projected onto the pin-array screen.
Our system has two novelties: i) automatic processing of 2D images to render 3D voxelized shapes
based on a deep learning model; ii) a mechanical structure of motor-actuated pins to enable a vertically
transforming flat to exist. Our automatic rendering system enables user experience of appreciating
various physically shaped digital images on the vertical surface without manually designing output
shapes.
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BACKGROUND
To enhance the presence of 2D visual contents, technologies for rendering 3D images have been
widely investigated. Stereoscopic rendering is by far the most established and widespread approach
to realize 3D images in the physical environment. There are some off-the-shelf holographic displays
based on the technology [2, 6]. As a different method to render shapes of digital visual contents,
“shape displays” have been actively investigated. Though their image resolution is low, those devices
enable tangible interaction such as touching and directly manipulating 3D images, which stereoscopic
methods cannot achieve. A famous early work in this literature is FEELEX by Iwata et al. [7], where
36 motorized pins are used to actuate the shapes of graphics projected onto the soft surface. Ishii
et al. developed a high resolution (30 × 30) shape display that is fast and accurately actuated [3].
However, these devices cannot actuate the shapes of projected visual images without preparation
in advance, lacking the ability to automatically detect the shape features of input data in real-time.
On the other hand, methods for real-time depth estimation of 2D images have been widely explored
in the computer vision field [4, 9]. As a first step to combine such a computational algorithm with a
shape display and to explore potential applications, we develop an automatic rendering and actuation
mechanism for the shape display based on a deep learning model.

AUTOMATIC DESIGN OF OUTPUT SHAPES

Figure 2: Architecture of the system.
As discussed in the “BACKGROUND” section, what distinguishes BulkScreen from other shape
displays is the automated pipeline for determining each pin’s depth. This is achieved through a salient
object detection process which is used for identifying visually distinctive areas in an image as a branch
of image segmentation [1]. In our system, a pre-trained Convolutional Neural Network [5] converts
an input image into a saliency map so that each pixel value represents an estimated saliency level
(Figure 2). Indeed, there is an assumption that making those salient pixels 3D is a suitable approach
for reflecting the characteristic of an input image in the 3D shape.
Once a saliency map is obtained, it is binarized and resized to 16 × 16 pixels, each of which

corresponds to a pin of the screen. The discrete depth of each pin is then defined so that the center
part of highly salient pixels becomes convex (Figure 2). In detail, the depth of the edge pixels of the
salient part is set to be level 1 and an inner part’s depth is incrementally increased up to level 8 as its
location becomes center. This heuristic is derived from an intuition that people’s attention is likely
to turn to the central part of each object and therefore we posit that making those pixels close to
users could enhance presence of an image. Note that all of the above processes run without delay in a
conventional CPU environment, enabling BulkScreen’s prompt response to input images.
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HARDWARE IMPLEMENTATION
To achieve autonomous actuation of the vertical screen, we developed a controlling and supporting
structure for 16 × 16 arrayed pins. Referring to the method depicted in Dynablock [10], we designed
a motorized pin where each pin is connected to an actuation unit (Figure 3 (A)) consisting of a DC
motor (TGPP06-D136: 240 rpm with 1:136 gear ratio), a 3D printed motor holder, and an off-the-shelf
lead screw (2 mm pitch, 1 start, 11 cm length). All units are embedded in the 60 × 60 cm vertical
supporting grid comprising aluminum frames and acrylic boards (Figure 3 (B)). To control all units
simultaneously, we designed a circuit server with 16 PCBs (Figure 3 (C)). Each PCB comprises four
shift registers (74HC5959) and eight motor drivers (TB6612FNG). Since one driver controls two motors
and one shift register sends individual signal to two drivers, a PCB unit is capable of controlling
16 motors simultaneously. Thus, a circuit server is able to actuate 256 pins.

Figure 3: A: Amotorized pin. B: Motorized
pins embedded in the screen frame. C: The
circuit server with 16 PCBs.

As illustrated in Figure 2, in each image rendering process, the Arduino UNO transmits a serial
signal, conveying the arrayed depth data from the algorithm to the shift registers. Through the shift
registers, the serial input is transformed to each motor driver in parallel, which controls motors
through pulse-width modulation (PWM). Since the lead screw travels roughly 8 mm per second based
on the dc motor’s rotation speed of 240 rpm and the eight discrete depth levels are arranged in equal
intervals of 10 mm, each pin approximately takes 1.25 × (depth level) seconds to reach to the designed
location. After the actuation of one image, the system sends the signal to move all pins to the flat
position, preparing for the next rendering process.

FUTUREWORK
The presented system is work-in-progress. In this section, we discuss the expected future work in two
directions: the evaluation of users’ perception toward BulkScreen’s automatically-designed shapes
and the exploration of its potential applications.

Evaluation Direction
The design of BulkScreen, especially its saliency-based automatic shape representation of 2D digital
images involves an important but still unexplored topic in the shape display research field:What is the
best 3D shape representation for 2D visual contents? Regarding this point, there are two assumptions
in the current implementation, which we mentioned in the “AUTOMATIC DESIGN OF OUTPUT
SHAPES” section. One is the use of saliency models in order to reflect image characteristics and
the other is the heuristic of making the salient pixels convex in pin-array screen. These approaches,
however, cannot be applied universally to a wide variety of visual contents. For example, in our pilot
demonstration of BulkScreen at South by Southwest 2019 (https://www.sxsw.com/), we observed
that some visitors responded positively toward a photo of human face voxelized in this manner by
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saying something like “The face of a person can be seen floating with a sense of reality”. On the
other hand, there are a few visitors who pointed out its strange perspective when watching the
output of a landscape picture. To further dig into this topic, it is necessary to apply different types of
representation rules on a variety of visual contents (human face, landscape, geometric shape, etc.),
the perception of which shall be measured through user study. We believe BulkScreen’s framework
will enable this investigation.

Application
We believe BulkScreen can enhance our interaction with visual contents in various applications,
leveraging its automatic shape representation and vertical screen. Currently, we have developed a
dynamic 3D picture frame as a first application. Figure 1 depicts the system rendering 3D shape
features of various types of images with original images projected (portrait: Einstein (Upper) and
drawing: Hokusai (Lower)). As the system is capable of actuating a variety of input images with
automatic designing of the shapes, users can enjoy a transition of their favorite pictures projected
onto BulkScreen with their tangibility and enhanced presence.

For a potential application, by expanding its screen spatially with more pin components, BulkScreen
could be installed as a display advertisement as the system can contribute to the improvement
of exhibited products’ presence with real 3D pixels. Another direction is to improve the speed for
actuating each pin. This could be realized by replacing the actuators with more powerful ones, such as
those used in [3]. In this manner, BulkScreen can be utilized for situations requiring quick interactions.
For example, we envision a future video calling app using BulkScreen where the display’s shape will
be transformed in accordance with the movements of the other user in real-time, anticipating remote
conversations [8] with an enhanced sense of presence.

CONCLUSION
In this work, we proposed BulkScreen which combines a saliency estimation algorithm and a vertical
pin-array shape display. The system achieves automatic design of the 3D shape and its physical
actuation after loading an input digital image. We believe our automatic shape rendering system
enables spontaneous manner of seeing represented shapes of digital images where the rendering
process does not involve human workload. The system will broaden interaction with 3D images
rendered by shape displays, which we will explore in the future.
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